PAUL SCHERRER INSTITUT

ETH zürich

Development of a caesium magnetometer array for the n2EDM experiment

Duarte Vicente Pais, on behalf of the nEDM Collaboration, Paul Scherrer Institut, Villigen, Switzerland

- 1 n2EDM experiment
- Searching for the neutron electric dipole moment d_n

The **baryon asymmetry of the Universe** (BAU, i.e. prevalence of matter over antimatter) could be explained by the combination of three criteria [Sakharov, JETP Lett.(1967)].

One of these suggests larger sources of CP violation than accounted for in the **Standard Model** (SM). A neutron **electric dipole moment** (EDM) d_n violates CP.

Theories beyond the SM, predict larger values for d_n , much closer to the current experimental limit (3 x 10⁻²⁶ e.cm with 90% C.L. [Pendlebury et al., PR D (2015)]).

Goal: increase the sensitivity of the d_n measurement, down to 1.1×10^{-27} e.cm [Abel et al., arXiv:1811.02340 (2018)]in order to: find its value Or increase its limit

1 - n2EDM experiment

• Principle

1 - n2EDM experiment

• $d_{\text{Hg} \rightarrow \text{UCN}}^{\text{false}}$ problem

1 - n2EDM experiment

• $d_{ m Hg ightarrow UCN}^{ m false}$ solution

Monitor $|\vec{B}|$ for different xyz positions in the n2EDM experiment with an array of caesium magnetometers (CsM).

- 2 Magnetometer
- Signal analysis

The recorded probe signal is demodulated to obtain ω_L .

Each CsM provides a $|\vec{B}| = \frac{\omega_L}{\gamma_{Cs}}$ measurement at a rate of 10 Hz.

3 – CsM array

• Testing the original symmetric arrangement (I)

The structure in the figure below inspired the geometry initially considered, i.e. a cylindrical symmetry was used.

3 – CsM array

• Testing the original symmetric arrangement (II)

Even for the most stringent spatial resolutions, a field uncertainty $\Delta |\vec{B}|$ of 2 pT prevents a proper characterization of the systematic.

- 3 CsM array
- Testing a genetic algorithm (GA) solution (I)

Certain array configurations relax the field and spatial resolutions constraints of CsM, without compromising the original goal of $\Delta d_{Hg \rightarrow UCN}^{false} < 4 \times 10^{-28} e.cm$

- 3 CsM array
- Testing a genetic algorithm (GA) solution (II)

View of the positions of the CsM in plates on the top of the double chamber.

Considering the possible $|\vec{B}|$ resolutions of CsM, the only thing left is the assembly of such array, with 104 CsM.

- 4 Discussion maybe?
- Glassblowing experience

Appendix containing solid caesium

Is there someone willing to share some glassblowing experience/tips?

Conclusion

- 1. Purpose of the n2EDM experiment.
- 2. Explanation of one of the most challenging systematic shifts in the neutron EDM measurement, the $d_{Hg \rightarrow n}^{false}$, and its characterisation with CsM.
- 3. Description of the CsM to be used.
- 4. Depiction of the CsM array to mount.

Thank you for your time