

Muon Accumulator Optics for a Muon Beam produced from positron-electron annihilations

Oscar BLANCO M. ANTONELLI, M. BOSCOLO, A. CIARMA, P. RAIMONDI

International Workshop on Fixed Field Alternating Gradient Accelerators PSI, 19-22/NOV/2019

LEMMA (Low Emittance Muon Accelerator) It is a low emittance muon <u>source</u>, <u>no cooling needed</u>

from **direct** μ **pair production**:

Muons produced from $e^+e^-\rightarrow \mu^+\mu^-$ at \sqrt{s} around the $\mu^+\mu^-$ threshold ($\sqrt{s} \approx 0.212 \, \text{GeV}$) in asymmetric collisions (to collect μ^+ and μ^-)

- Need Positrons of ≈ 45 GeV
- $\gamma(\mu) \approx 200$ and μ laboratory lifetime of about 500 μ s

Muon transverse and longitudinal emittance depend on the e+ beam energy and size

The value of sqrt(s) (i.e. E(e⁺) for atomic e⁻ in target) has to maximize the muons production and minimize the beam angular divergence and energy spread

M. Antonelli. et al. Novel proposal for a low emittance muon beam using positron beam on target. NIM A 807 (2016) 101

M. Biagini, et al. IPAC19. MOZZPLS2, Positron Driven Muon Source for a Muon Collider: Recent Developments Booster? Collider? Muon accumulation 1 to 100 targets e+ at 45 GeV e+ Low emittance dump Limited by bremstrahlung and emittance growth due to chromaticity Booster? Collider? Ring to give the beam **LINAC** Some desired time e+ structure

e+ injection at 45 GeV

M. Biagini, et al. IPAC19. MOZZPLS2, Positron Driven Muon Source for a Muon Collider: Recent Developments Booster? Collider? Muon accumulation **ACC** Chromaticity is corrected in the arcs, e+ at 45 GeV e+ Low emittance Bremstrahlung is mitigated using only one target, the thickest possible **ACC** Booster? Collider? Ring to give the beam **LINAC** Some desired time e+ structure

e+ injection at 45 GeV

Muon Accumulator Rings

The muon accumulator rings collect and recirculate the muons produced on every positron bunch passage, increasing the muon bunch intensity

Requirements 2018 and status 2019

	Required 2018	Optics Design Status	
Small Length	60 m	150 m (x2.5)	To mitigate muon decay
Large Dynamic Ap.	±20%	±10%	Production efficiency and energy spread are proportional
Low ß*	According to target length	1.3 m	To avoid emittance growth from multiple scattering
Time of accumulation	1000 turns	-to be checked with the targets	To get ~10 ⁹ muons in one bunch in less than 0.4 ms

Layout (One Ring)

By Pantaleo Raimondi

- The IR region is shared among three beams : μ +, μ at 22.5 GeV, and e+ at 45 GeV Two triplets focus the beam around the IP (target location)
- Each ¼ of arc, is composed by 4 units of two halves of a sector bend dipole, and 5 quadrupoles.
 Zero-length multipoles (2nd, 3rd, and 4th order) are located inbetween quadrupoles.
- L* is long to make space for a H₂ target of 0.3X₀ in total
- The lattice is matched to cancel α_c
 Sextupoles cancel chrom., 2nd order disp.
 Oct, Dec, Doc opt. to cancel α_c at higher orders

Length	147 m
Energy Acceptance	±10 %
Max. Dipole field	12 T
Quad field gradient	<151 T/m
ß*	1.3 m
Target space (2 x L*)	2 x 1.4 m
RF Freq	1.2 GHz
RF Voltage	100 MV

MUACC Interaction Region12

MUACC40 IR12 e+ and μ optics

Linear Optics

First order optics agreement among MAD, MAD-X, MAD-X PTC and ZGOUBI

- Horizontal beta [m]
- Vertical beta [m]
- Horizontal dispersion [m]

Chromaticity

• Natural chromaticity agrees among simulation codes

• The multipole optimization done by Pantaleo in MAD does not automatically work in PTC, therefore, a new multipole optimization has been carried out after the translation from MAD to MAD-X.

The differences in the optimization change the dynamics

MAD (Qx',Qy')	MAD-X (DQ1,DQ2)	MADX PTC (DQ1,DQ2)	ZGOUBI (DQ1,DQ2)
-0.08	-	-0.03	-0.08
0.06	-	0.00	0.05

Longitudinal Phase Space

100 turns, No Energy loss, PTC model

IF MUONS DO NOT RADIATE AND $\alpha_{\rm c}$ IS ZERO , WHY DO WE NEED A CAVITY ?

We expect to have approximately 0.1~0.2% energy loss per passage through the target due to bremstrahlung.

The cavity is tuned to recover the energy loss, which along all accumulation period of 1000 turns is 1~2 times the initial 22 GeV

Tune and optics functions at the IP

Using the PTC model we achieved +8/-12% energy acceptance, although, tune footprint crosses 3rd and 4th order resonances pointing to possible particle losses in a lattice with errors.

Admittance (100 turns)

- From multiturn tracking, we have estimated an admittance of 1~10 μm.rad.
- This is expected to be far larger than needed as the typical muon beam emittance is much less than $1\mu m.rad$

Open Questions on Optics

- Radiation from positron beam crossing strong magnets in the accumulator,
- Further optimization of the lattice: length reduction, increment energy acceptance, considerations on multipoles,

10% energy aceptance in the model is already a great achievement and this lattice could be used for initial studies with target.

- HOW MUCH COULD WE GAIN WITH A FFA LATTICE ?
- Energy acceptance, smaller circumference, ...

FFA design

I will assume a magnet with B0=9T and gradient of 150 T/m can be built.

It restricts the aperture to 3 cm, maybe 4 cm

Smallest circumference ~100m

B0 approx 6 T
Grad < 320 T/m
Alfa c = 2.8e-3
L = 98 m
Nat dq1=-91,dq2=-49
Dispersion is large
0.06m*20% = 1.2 cm,
Cavity 150MHz, 200MV
→May be a possible FFA

Reducing alfa_c by brute force

Bf 5.6T, 900T/m, 89kT/m2
Bd -1.2T, -700T/m, -92kT/m2
Alfa c = 2.6e-4
L = 245 m
Nat dq1=-233,dq2=-157
Aperture Diameter of 5mm
Dispersion is reasonable
0.01m*20% = 0.2 cm,
Cavity 306MHz, 400MV
→May be a possible FFA

Cancelling alfa_c in a more effective way

- I will explore two possible combinations :
 DFD, or FDF.
 Chech which one reduces the natural chromaticity and dispersion.
- To close the circumference with n cells, the angles must add up to 2π n * (Σ θi) = 2π
- Alfa_c is cancelled if the products of dispersion by bending angle add up to zero.
 n * (Σθi * η) = 0

There are two ways here: produced negative dispersion, but, the design becomes similar to the linear optics, or, use antibends and enlarge the circumference.

Alfa_c is as small as needed, but alfa_c1 is visibly large

Cancelling alfa_c1...

- I will explore two possible combinations :
 DFD, or FDF.
 Chech which one reduces the natural chromaticity and dispersion.
- To close the circumference with n cells, the angles must add up to 2π n * (Σ θi) = 2π
- Alfa_c is cancelled if the products of dispersion by bending angle add up to zero.
 n * (Σθi * ηi) = 0
- Alfa_c1 is approximately cancelled if the product of the second order dispersion by the bending angle adds up to zero n * (Σ θi * DDXi) = 0

Alfa_c and alfa_c1 are zero by adding sextupoles, but, magnets are not longer scaling

Bd 13.7 T, -95T/m, -11.2kT/m² Bf -5.5 T, 133T/m, 3.2kT/m² alfa c = 2.6e-4 **L = 126 m** Nat. dq1=-14, dq2=-14 Aperture Radius > +/- 3cm

Dispersion: 0.1m*20% = 2 cm, Cavity 2GHz, 100MV

CONCLUSIONS

Not a happy ending design yet, but, the road is worth trying.

The goal for LEMMA is the production of a large lifetime and small emittance muon beam from positrons impinging on a target.

LEMMA design foresees to increase the muon bunch intensity by recirculating muons on an accumulator over a fraction of the muon lifetime.

I have presented the lattice by P. Raimondi of the accumulator ring: circumference of ~150 m and ±10% of energy acceptance.

The plan is to continue with optimizations to reach ±20% energy acceptance. Meanwhile we started to look on FFA possibilities.

FFAs could be also interesting in accelerating stages downstream.