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LEMMA (Low Emittance Muon Accelerator)
It is a low emittance muon source, no cooling needed
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Muon transverse and longitudinal emittance depend on the 
e+ beam energy and size
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M. Antonelli. et al. Novel proposal for a low emittance muon beam using positron beam on target. 
NIM A 807 (2016) 101

Muon production from positrons impinging on target
M. Biagini,et al. IPAC19.
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M. Biagini,et al. IPAC19. MOZZPLS2, 
Positron Driven Muon Source for a Muon Collider: Recent Developments
Several schemes are currently being studied to keep a high rate positron beam
at small transverse and longitudinal emittance
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M. Biagini,et al. IPAC19. MOZZPLS2, 
Positron Driven Muon Source for a Muon Collider: Recent Developments
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M. Biagini,et al. IPAC19. MOZZPLS2, 
Positron Driven Muon Source for a Muon Collider: Recent Developments
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Muon Accumulator Rings
The muon accumulator rings collect and recirculate the muons produced on every 

positron bunch passage, increasing the muon bunch intensity
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Requirements 2018 and status 2019

Required
2018

Optics Design
Status

Small Length 60 m 150 m
(x2.5)

To mitigate muon 
decay

Large Dynamic Ap. ±20% ±10% Production 
efficiency and 
energy spread are 
proportional

Low ß* According to
target length

1.3 m To avoid emittance 
growth from 
multiple scattering

Time of 
accumulation

1000 turns -to be checked with 
the targets

To get ~109 muons in 
one bunch in less 
than 0.4 ms

e+ T

µ-

µ+
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Layout (One Ring)

IP
(target)

RF

survey from SIREPO
(online zgoubi interface)

● The IR region is shared among three beams : 
µ+, µ- at 22.5 GeV, and e+ at 45 GeV

Two triplets focus the beam around the IP (target 
location)

● Each ¼ of arc, is composed by 4 units of 
two halves of a sector bend dipole, and 5 quadrupoles.
Zero-length multipoles (2nd, 3rd, and 4th order) are 
located inbetween quadrupoles.

● L* is long to make space for a H
2
 target of 0.3X

0
 in total

● The lattice is matched to cancel ⍺
c

Sextupoles cancel chrom., 2nd order disp.
Oct, Dec, Doc opt. to cancel ⍺

c
 at higher orders

Length   147   m
Energy Acceptance    ±10   %
Max. Dipole field     12   T
Quad field gradient <151   T/m
ß*        1.3 m
Target space (2 x L*) 2 x 1.4 m
RF Freq       1.2 GHz
RF Voltage   100    MV

By Pantaleo Raimondi

IR 5 quads

¼ of arc
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MUACC Interaction Region12
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3D-model obtained with MDISim
CERN. H. Burkhardt
IPAC15, TUPTY031
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MUACC40 IR12 e+ and µ optics
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Linear Optics

RFIP

First order optics agreement among MAD, MAD-X, MAD-X PTC and ZGOUBI
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Chromaticity
● Natural chromaticity agrees among simulation codes

MAD (Qx’,Qy’) MAD-X (DQ1,DQ2) MADX PTC (DQ1,DQ2) ZGOUBI (DQ1,DQ2)
   -9.37 -   -9.41   -9.37
-19.69 - -19.47 -19.69

● The multipole optimization done by Pantaleo in MAD does not automatically work in PTC, therefore, 
a new multipole optimization has been carried out after the translation from MAD to MAD-X.

The differences in the optimization change the dynamics

MAD (Qx’,Qy’) MAD-X (DQ1,DQ2) MADX PTC (DQ1,DQ2) ZGOUBI (DQ1,DQ2)
-0.08 - -0.03 -0.08
 0.06 -  0.00  0.05
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Longitudinal Phase Space

100 turns, No Energy loss, PTC model

ct (mm)

%
 d

E/
E

IF MUONS DO NOT RADIATE AND ⍺
c
 

IS ZERO , WHY DO WE NEED A 
CAVITY ?

We expect to have approximately 
0.1~0.2% energy loss per passage 
through the target due to 
bremstrahlung.

The cavity is tuned to recover the 
energy loss, which along all 
accumulation period of 1000 turns is 
1~2 times the initial 22 GeV

+/- 1 cm
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Tune and optics functions at the IP
Using the PTC model we achieved +8/-12% energy
acceptance, although, tune footprint crosses 3rd 
and 4th order resonances pointing to possible 
particle losses in a lattice with errors. +8/-12%

+8/-12%
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Admittance (100 turns)

● From multiturn tracking, we have estimated an admittance of 1~10 µm.rad.

● This is expected to be far larger than needed as the typical muon beam emittance is much less 
than 1µm.rad

x (mm)

x’ (mrad)

dE/E dE/E

y’ (mrad)

y (mm)
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Open Questions on Optics

● Radiation from positron beam crossing strong magnets in the accumulator,

● Further optimization of the lattice : length reduction, increment energy acceptance, considerations 
on multipoles,

10% energy aceptance in the model is already a great achievement and this lattice could be used 
for initial studies with target.

● HOW MUCH COULD WE GAIN WITH A FFA LATTICE ?
● Energy acceptance, smaller circumference,  ...
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FFA design
I will assume a magnet with B0=9T 
and gradient of 150 T/m can be 
built.

It restricts the aperture to 3 cm,
maybe 4 cm



20

Smallest circumference ~100m
B0 approx 6  T
Grad < 320 T/m
Alfa c =  2.8e-3
L = 98 m
Nat dq1=-91,dq2=-49
Dispersion is large
0.06m*20% = 1.2 cm,
Cavity 150MHz, 200MV
→May be a possible FFA

dE/E
(%)

ct (mm)
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Reducing alfa_c by brute force
Bf    5.6T,  900T/m,  89kT/m2
Bd -1.2T, -700T/m, -92kT/m2
Alfa c =  2.6e-4
L = 245 m
Nat dq1=-233,dq2=-157
Aperture Diameter of 5mm
Dispersion is reasonable
0.01m*20% = 0.2 cm,
Cavity 306MHz, 400MV
→May be a possible FFA

dE/E
(%)

ct (mm)+/-10cm
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Cancelling alfa_c in a more effective way
● I will explore two possible combinations : 

DFD, or FDF. 
Chech which one reduces the natural chromaticity and dispersion.

● To close the circumference with n cells, the angles must add up to 2π
n * ( Σ θi ) = 2π

● Alfa_c is cancelled if the products of dispersion by bending angle add up to zero.
 n * ( Σ θi * ƞ ) = 0

There are two ways here: 
 produced negative dispersion, but, the design becomes similar to the linear optics,
or, use antibends and enlarge the circumference.



23

Alfa_c is as small as needed, but alfa_c1 is visibly large
Bf     -7.1 T,   159T/m,     1786T/m2

Bd     9.6 T,    -60T/m,    -1764T/m2

alfa c =  0.6e-4
L = 138 m
Nat. dq1=-13, dq2=-14
Aperture Diameter of  +/- 3cm

Dispersion: 0.1m*20% = 2 cm,
Cavity 61MHz, 400MV
→May be a possible FFA

dE/E
(%)

ct (mm)
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Cancelling alfa_c1...
● I will explore two possible combinations : 

DFD, or FDF. 
Chech which one reduces the natural chromaticity and dispersion.

● To close the circumference with n cells, the angles must add up to 2π
n * ( Σ θi ) = 2π

● Alfa_c is cancelled if the products of dispersion by bending angle add up to zero.
 n * ( Σ θi * ƞi ) = 0

● Alfa_c1 is approximately cancelled if the product of the second order dispersion by the 
bending angle adds up to zero
 n * ( Σ θi * DDXi ) = 0
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Alfa_c and alfa_c1 are zero by adding sextupoles, but, magnets 
are not longer scaling

Bd      13.7 T,    -95T/m,   -11.2kT/m2

Bf      -5.5 T,    133T/m,        3.2kT/m2

alfa c =  2.6e-4
L = 126 m
Nat. dq1=-14, dq2=-14
Aperture Radius >  +/- 3cm

Dispersion: 0.1m*20% = 2 cm,
Cavity 2GHz, 100MV

dE/E
(%)

ct (mm)
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CONCLUSIONS

Not a happy ending design yet, but, the road is worth trying.

The goal for LEMMA is  the production of a large lifetime and small emittance muon beam from 
positrons impinging on a target.

LEMMA design foresees to increase the muon bunch intensity by recirculating muons on an 
accumulator over a fraction of the muon lifetime.

I have presented the lattice by P. Raimondi of the accumulator ring: circumference of ~150 m and 
±10% of energy acceptance.

The plan is to continue with optimizations to reach ±20% energy acceptance. Meanwhile we 
started to look on FFA possibilities.

FFAs could be also interesting in accelerating stages downstream.
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