Study and beam experiment on MERIT scheme

2019.11.19 FFA '19 @PSI Kyoto University Hidefumi Okita

Contents

- Background
- Purpose
- MERIT Proof-of-principle ring (MERIT-PoP ring)
- Beam study and evaluation on MERIT scheme
- Summary

Radioactive waste from nuclear plants

ODisposal of MA & LLFP

- %https://www.jst.go.jp/impact/program/08.html
- → Radioactivity of spent fuel ~ 1000 year
- OMA: Transmutation using ADS or FBR is useful solution
- OLLFP: Transmutation using ADS or FBR is not practical
- → Requirements for effective transmutation scheme to reduce the LLFP

Negative muon transmutation

$$\mu^- + p \rightarrow n + \nu_\mu$$

T.Yamazaki et al. Negative muon spin rotation. Phys.Scr., Vol. 11, pp. 133-139, 1975.

Probability of transmutation > 95% (@Z>30)

Negative muon transmutation for LLFP

- OAdvantages of negative muon transmutation for LLFP
 - Reduction of load of isotope separation
 - Transmutation to stable nuclei

High intensity & high efficiency negative muon production is indispensable

5

Issues of intense negative muon production

OProduction of negative muon

$$p(>300MeV) + n \rightarrow \pi^{-} + p + p$$

$$\tau_{\pi^{-}} = 26[ns] \qquad \mu^{-} + \overline{\nu_{\mu}} \qquad \tau_{\mu^{-}} = 2.2[\mu s]$$

- Thick target is necessary for high intensity negative muon production
- Olssues of negative pion production with thick target
- → Yield of negative pion is not much increased.
 - Absorption of negative pion
 - Range of negative pion
 - Decrease of production cross section

N.J.DiGiacomo et al. Inclusive pion production in 330, 400, and 500 MeV proton-neucleus collisions. Physical Review C, Vol. 31, No. 1, pp. 292-294, 1985.

MERIT scheme

MERIT: Multiplex Energy Recovery Internal Target

- OCharacteristics of MERIT scheme "Acceleration" and "Storage" using internal target
- **OAdvantages of MERIT scheme**
 - □ Negative pion production using thin internal target
 - Reduction of loss of negative pion in target
 - High production cross section
 - →high efficiency production
 - □Fixed RF (Semi-isochronous) acceleration
 - CW beam operation
 - Lower the injection energy
 - → High intensity production & reduction of load of injector

RF Cavity
Energy Recovery & Acceleration

Purpose

Proof of principle of MERIT scheme "Acceleration" & "Storage" using internal target

Overview of this study

Development of MERIT-PoP ring

- Design of the ring
- Evaluation of field error and correction & injection matching
- Beam experiment for validation
- Betatron tune measurement

Study and beam experiment on MERIT scheme

- Semi-isochronous acceleration
- MERIT scheme with internal target

Design of MERIT-PoP ring

- OMERIT-PoP ring was developed by modification of existing ring "FFA-ERIT"
- **Requirements for the MERIT-PoP ring**
 - Semi-isochronous acceleration (η_{slip}~0)
 - Separation of circulation orbit (Injection—>Target)

$$\eta_{slip} = \frac{1}{k+1} - \frac{1}{\gamma^2}$$

- Field index k ~ 0.07 (η_{slip}~ -0.044)
 - → Acceleration range: 9.5 ~12.0 [MeV]
 - →Orbit separation: excursion~250[mm]
- OHorizontal tune become close to integer
 - →Important to evaluate and correct field error

Particle	Proton
Number of Cells	8
Lattice	FDF-triplet
Field Index k	0.07
Energy Range [MeV]	9.5 - 12.0
Orbit Radius[mm]	2250 - 2500
Slippage Factor η_{slip}	-0.044
Tune H/V	1.03/1.25
Parameters of F/D Magnet	
Magnetic Field [T]	0.59/0.14 (at r = 2350 [mm])
Opening Angle of Magnet[deg.]	6.4/5.1
Minimum Half Pole Gap [mm]	84.0/85.2
Parameters of RF Cavity	
RF Voltage [kV]	75-225
Harmonic Number	6
RF Frequency [MHz]	18.12

Q Value

 ~ 7000

Field error correction

- OLarge horizontal aperture is essential for the beam experiment.
- **COD** decrease the horizontal aperture.
- OEven if field error is small, induce large COD in MERIT-PoP ring

$$x(s) = \left[\frac{\sqrt{\beta(s)\beta(s_0)}}{2\sin(\pi\nu_H)} \frac{\delta(Bl)}{B\rho} \right] \cos(\pi\nu_H - |\psi(s) - \psi(s_0)|)$$

- OEvaluation of field error @ RF section using OPERA3D/TOSCA
 - →Dipole field error : 10 [mrad] (~ COD amplitude ~ 70 [mm])
- Evaluation of correction using back-leg coil

Correction scheme using back-leg is useful.

2450

2500

Injection matching

Outer Scraper

Inner Scraper

35

- Small initial beam size is also essential for the beam experiment.
 - →Injection matching is important.
- OEvaluation of adjustment scheme using back-leg coil

Position matching is adequate @ back-leg 70 [A] (COD amplitude 20 [mm])

Adjustment scheme using back-leg coil is useful

 Beam experiment for validation of field error correction & injection matching

Apparatus of MERIT-PoP ring

Beam experiment on field error correction & injection matching

Signals of bunch monitor

Beam experiment on

field error correction & injection matching

- Results of experiment
- Circulation more than 300 turns using back-leg
- Good injection condition @ back-leg 70[A]
- Got ready to the beam experiment on MERIT scheme

Tune measurement

 $\nu_{\rm H}$

Tracking simulation & experimental study on MERIT scheme
17

Internal target

- ODesign of internal target
 - ■Material : Carbon
 - ☐ Two stage structure in radial direction
 - 1st stage : $t=720 \mu g/cm^2$, $\Delta E=27 \text{ keV}$, $\theta_{\text{scatter}}=1.9 \text{ mrad}$
 - 2nd stage : $t=980 \mu g/cm^2$, $\Delta E=37 \text{ keV}$, $\theta_{\text{scatter}}=2.2 \text{ mrad}$

Tracking simulation for evaluation of semi-isochronous acceleration & acceleration and storage

About tracking simulation

□Code: G4beamline Runge-Kutta + Geant4

OField map of MERIT-PoP ring

☐ 3D field map of OPERA3D/TOSCSA

OPhysical Aperture

□ Essential to evaluate beam loss

□ Developed code includes

Vacuum chamber, foil holder, scraper, etc.

ORF field

 \square Numerical sin wave (V=V0sin(ω t))

Evaluation on acceleration & storage in MERIT-PoP ring

- OTracking on acceleration & storage using G4BL
- OParameters of tracking simulation
 - Initial proton E: 10.0 [MeV]
 - RF voltage: 75 [kV]
 - Frf: ~18.12 [MHz]
 - with & w/o the internal target

- OBeam start to hit the internal target from 20 turns.
- OBeam life is extended more than 100 turns by inserting the internal target.
- OBeam loss is started from 100 turns because of emittance growth.

Beam experiment on semi-isochronous acceleration (w/o the internal target)

Results on beam intensity from bunch OParameters of beam experiment monitor & G4BL tracking Injection energy: ~10.0 [MeV] Horizontal Aperture (R~2500 [mm]) RF voltage: 75 [kV] 11.5 • Frf: 18.12 [MHz] 11.0 E Me 10.5 RF 75[kV] w/o Target 10.0 0.00 Horizontal Aperture (R~2250 [mm]) 1.2 -135 -0.0160 1.0 BM Signal[V] -0.02turn -0.030.8 50 turn -0.040.6 -0.05-0.060.4 5000 10000 15000 20000 25000 30000 35000 40000 time [ns] 0.2 Signal of bunch monitor Phase analysis from signal of bunch monitor

Experimentally confirmed semi-isochronous acceleration in MERIT-PoP ring

Beam experiment on acceleration & storage with the Internal target

OParameters of beam experiment

Injection energy: ~10.0 [MeV]

RF voltage: 75 [kV]

Frf: 18.12 [MHz]

Target: R=2367~2507 [mm]

- OMore than 100 turns in case with the internal target
- OExperimental results are in good agreements with G4BL
- → <u>Demonstrated the acceleration & storage experimentally</u>

Summary

OPurpose

Proof of principle of MERIT scheme

"Acceleration" & "Storage" using internal target

- ODevelopment of MERIT-PoP ring
 - □ Design of PoP-MERIT ring
 - ☐ Field error correction & injection matching using back-leg
 - ☐ Beam experiment for validation on correction & injection matching
 - ■Betatron tune measurement
- **Study and beam experiment on MERIT scheme**
 - □ Tracking simulation using G4BL
 - □Beam experiment
 - Semi-isochronous acceleration
 - ->Confirmed semi-isochronous acceleration in MERIT-PoP ring
 - Acceleration & storage using the internal target
 - ->Confirmed the effect of the internal target.
 - ->Good agreement with calculation results.
 - → Demonstrated the acceleration & storage experimentally

Thank you for your attention