

Matthias Frey :: PhD student LSM-AMAS :: Paul Scherrer Institut

Adaptive mesh refinement Poisson solver for neighbouring bunch simulations

11/21/2019 :: FFA'19

Thesis advisor: Prof. Dr. Klaus S. Kirch Thesis supervisor: Dr. Andreas Adelmann

PSI Ring Cyclotron
(https://www.psi.ch/ltp/facilities)

PSI Ring Cyclotron
(https://www.psi.ch/ltp/facilities)

PSI Ring Cyclotron
(https://www.psi.ch/ltp/facilities)

PSI Ring Cyclotron
(https://www.psi.ch/ltp/facilities)

Goal: Understand Halo Creation and Evolution

- Halo particles become losses
 - \Rightarrow machine activation
 - \Rightarrow machine intensity limitation
- Large scale N-body problems of O(10⁹...10¹⁰) particles coupled with Maxwell's equations
- Particle-In-Cell (PIC) models with $\mathcal{O}(10^8...10^9)$ grid points

• Spatial-halo parameter, i = x, y, z

$$h_i = rac{\left\langle q_i^4
ight
angle}{\left\langle q_i^2
ight
angle^2} - rac{15}{7}$$

• Phase-space halo parameter, i = x, y, z

$$H_{i} = \frac{\sqrt{3}}{2} \frac{\sqrt{I_{4}^{i}}}{I_{2}^{i}} - \frac{15}{7}$$

$$I_{2}^{i} = \langle q_{i}^{2} \rangle \langle p_{i}^{2} \rangle - \langle q_{i} p_{i} \rangle^{2}$$

$$I_{4}^{i} = \langle q_{i}^{4} \rangle \langle p_{i}^{4} \rangle + 3 \langle q_{i}^{2} p_{i}^{2} \rangle^{2} - 4 \langle q_{i} p_{i}^{3} \rangle \langle q_{i}^{3} p_{i} \rangle$$

C. K. Allen and T. P. Wangler, Phys. Rev. ST Accel. Beams, Vol. 5, Issue 12 (2002)

Matthias Frey

PAUL SCHERRER INSTITUT Electrostatic PIC with Neighbouring Bunches in OPAL

• Energy bin k of particle evaluated from momentum $\beta\gamma$:

 \rightarrow

$$k = \left\lfloor \frac{\sinh^{-1} \left(\beta\gamma\right) - \sinh^{-1} \left(\min_{i=\{1,N\}} \left(\beta\gamma\right)_{i}\right)}{\eta} \right\rfloor$$

derived from: $\Delta(\beta\gamma) = (\beta\gamma)_{k+1} - (\beta\gamma)_{k} \approx \eta\gamma_{k} = \eta\sqrt{1 + (\beta\gamma)_{k}^{2}} \xrightarrow{\eta \ll 1} \frac{d(\beta\gamma)(k)}{dk} \approx \eta\sqrt{1 + (\beta\gamma)_{k}^{2}}$
 $\rightarrow (\beta\gamma)_{k} = \sinh \left(k\eta + \sinh^{-1} \left[\min_{i=\{1,N\}} (\beta\gamma)_{i}\right]\right)$

G. Fubiani, et al., Phys. Rev. ST Accel. Beams, Vol. 9, Issue 6 (2006)

Matthias Frev

Electrostatic PIC with Neighbouring Bunches in OPAL

- Space-Charge calculation for multi-bunch mode:
 - energy-dependent particle binning
 - compute space-charge in every energy bin
 - sum up contribution of all energy bins

- Naive Meshing: Cartesian Uniform
 - Waste of memory in regions of void
 - Waste of computational power

Towards Exascale Computing

- Naive Meshing: Cartesian Uniform
 - Waste of memory in regions of void
 - Waste of computational power
- Adaptive Meshing:
 - Save memory
 - Save computational effort
 - Used in CFD, astrophysics, etc.
- Issue of state-of-the-art solvers:

Implementation is hardware specific (e.g. CPU, GPU)

Tagging - Mark a Cell for Refinement (https://amrex-codes.github.io/)

• Coordinate space discretized by grid

Tagging - Mark a Cell for Refinement (https://amrex-codes.github.io/)

- Coordinate space discretized by grid
- Mark cell for refinement according to some criteria:
 - charge density per cell
 - potential gradient
 - potential magnitude
 - etc.

Tagging - Mark a Cell for Refinement (https://amrex-codes.github.io/)

• Generate level 1

Tagging - Mark a Cell for Refinement (https://amrex-codes.github.io/)

- Generate level 1
- Mark cell for refinement according to some criteria:
 - charge density per cell
 - potential gradient
 - potential magnitude
 - etc.

Tagging - Mark a Cell for Refinement (https://amrex-codes.github.io/)

• Generate level 2

Tagging - Mark a Cell for Refinement (https://amrex-codes.github.io/)

- Generate level 2
- Maximum level reached (user-defined)

Dan F. Martin and Keith L. Cartwright. Solving poisson's equation using adaptive mesh refinement. Technical Report UCB/ERL M96/66, Univ. Calif. Berkeley. 1996.

• Poisson's equation:

$$\Delta \phi(x, y, z) = -rac{
ho}{arepsilon_0}$$

 $\phi(\infty) = 0$

with charge density ρ , vacuum permittivity ε_0 and potential ϕ .

- **Difficulty:** Continuity conservation of *φ*!
- Solution: elliptic matching condition, i.e.
 Dirichlet + Neumann condition at coarse-fine interfaces

PAUL SCHERRER INSTITUT

AMR Poisson Solver

V-cycle (residual correction formulation) Algorithm

1: function RELAX(l)
2: if
$$l = l^{max}$$
 then
3: $r^{l} \leftarrow \rho^{l} - \mathcal{L}\phi^{l}(\mathcal{L}: Laplace operator)$
4: end if
5: if $l > 0$ then
6: $\phi^{l,save} \leftarrow \phi^{l}$
7: $e^{l-1} \leftarrow 0$
8: SMOOTH(e^{l}, r^{l})
9: $\phi^{l} \leftarrow \phi^{l} + e^{l}$
10: $r^{l-1} \leftarrow \mathcal{R}r^{l}$ > restrict residual
11: RELAX(l-1)
12: $e^{l} \leftarrow \mathcal{P}e^{l-1}$ > prolongate error
13: $r^{l} \leftarrow r^{l} - \mathcal{L}e^{l}$
14: $\delta e^{l} \leftarrow 0$
15: SMOOTH($\delta e^{l}, r^{l}$)
16: $e^{l} \leftarrow e^{l} + \delta e^{l}$
17: $\phi^{l} \leftarrow \phi^{l}, save + e^{l}$
18: else
19: solve $Ae^{0} = r^{0}$
20: $\phi^{0} \leftarrow \phi^{0} + e^{0}$
21: end if
22: end function
Mathing Free

- Implemented fully in Trilinos with **2nd generation packages**, i.e.
 - Tpetra (matrix / vector data structure)
 - Ifpack2 (smoothers e.g. Gauss-Seidel, Jacobi)
 - MueLu, Amesos2, Belos (linear solvers)

• Implemented fully in Trilinos with **2nd generation packages**, i.e.

- Tpetra (matrix / vector data structure) \rightarrow Kokkos
- Ifpack2 (smoothers e.g. Gauss-Seidel, Jacobi)
- MueLu, Amesos2, Belos (linear solvers)
- Kokkos allows **portable code** between hardware architectures **without changing your code**!
 - GPU
 - OpenMP / PThreads / serial

AMR Poisson Solver Parallel Efficiency

(efficiency) $E_p = S_p/p \le 1$

Memory Usage of AMR and FFT Particle-In-Cell Models

- Adaptive mesh refinement as a new OPAL PIC model for neighbouring bunch simulations
- Benefits w.r.t. neighbouring bunch simulations at same resolution:
 - less computational intensive
 - less memory intensive
- Hardware-architecture independent AMR Poisson solver
- Please see also

M. Frey, et al., On architecture and performance of adaptive mesh refinement in an electrostatics Particle-In-Cell code, Computer Physics Communications, 2019, https://doi.org/10.1016/j.cpc.2019.106912

Thanks to

P. Arbenz (ETHZ) A. Almgren (LBNL) A. Myers (LBNL) W. Zhang (LBNL) D. Martin (LBNL) C. Siefert (Sandia) K. Devine (Sandia)

