FFAG 2019 WORKSHOP - 19-22 November 2019 PSI, Villigen, Confédération des Helvètes

USING FIELD MAPS TO VALIDATE THE FFAG CELL. BEYOND: ALL MAPS OUT TO TRACK CBETA ERL! OR, USING MODERN TOOLS TO DESIGN ACCELERATORS

F. Méot, S. Brook, D. Trbojevic, N. Tsoupas Brookhaven National Laboratory Collider-Accelerator Department J. Crittenden

Cornell

OPERA simulation of CBETA return loop FFAG cell

• Either a single full-cell field map:

• Far more flexible if it proves to work: two separate maps

What the code sequence looks like, for an FFAG loop cell

• Full-cell 3D field map:

'TOSCA' QF+BD 0 0 -9.69871600E-04 1.000 1.000 1.000 HEADER_8 ZroBXY 451 83 27 15.1 1. 3cellFieldMap.table 1 -508.5 44.49 2.2E4 ! MOTION BOUNDARY 2 .2 2 0.000 0.000 0.000 'CHANGREF' XS -0.678391 YS -1.8870962 ZR -5.0

```
• Separate QF, BD maps:
```

```
'DRIFT' HD2
6.15
 'DRIFT'
-18.35 ! = (50cm - 13.3cm)/2 (50cm is field map extent)
'TOSCA' QF
0 0
-9.76E-04 1. 1. 1.
HEADER_8 ZroBXY
501 83 1 15.1 1.
QF-3D-fieldMap.table
0 0 0 0
2
.2
   0.0000000E+00 0.0000000E+00 0.0000000E+00
2
 'DRIFT'
-18.35 ! = (50cm - 13.3cm)/2 (50cm is field map extent)
 'DRIFT'
            ED1
1.2
 'CHANGREF'
                  CORNER
ZR -2.5000000
 'DRIFT'
            BPM
4.2
 'CHANGREF'
                  CORNER
ZR -2.5000000
  'DRIFT'
            ED1
1.2
 'DRIFT'
-18.9 ! = (50cm - 12.2cm)/2 (50cm is field map extent)
'TOSCA'
           BD
0 0
-9.76E-04 1.0000000E+00 1.0000000E+00 1.0000000E+00
HEADER_8 ZroBXY
501 83 1 15.1 1.0
BD-3D-fieldMap.table
0 0 0 0
2
.2
   0.0000000E+00 -.019 0.E+00
                                   ! Y-offset -0.019cm = inwar
 'DRIFT'
-18.9 ! = (50cm - 12.2cm)/2 (50cm is field map extent)
 'DRIFT' HD2
6.15
```

Case of two independent maps: optics validation • FIRST ORDER PARAMETERS OF THE ARC CELL

◊ separate field maps of QF and BD, or 3-D full-cell single map, yield same paraxial quantities (orbits, tunes, chromaticities, etc.)

Path length across cell (cm)				
Difference is at few ppm level.				
E (MeV)	42	78	114	150
Single 3D map	44.4846	44.3298	44.3898	44.5806
Two 2D or 3D maps	44.4845	44.3291	44.3884	44.5797

• **DYNAMICAL ADMITTANCE**, 400-CELL

♦ Maximum stable invariants are \sim meter normalized, far beyond µm CBETA beam emittance

case of single 3D field map (same scales)

• DYNAMICAL ADMITTANCE, ENERGY SCAN

"H": horizontal motion (initial V invariant is taken very small). "V": vertical motion (initial H invariant is taken very small).

We can make the FFAG cell model even fancier...

• Include iron core steerers, with independent control

 \diamond Two corrector field maps, and as we did for EMMA:

- one has F-corrector on and D-corrector off
- one has F-corrector off and D-corrector on
- Code sequence, case of single full-map:

```
QF+BD map + corrector maps
 'TOSCA'
 0 0
  -9.69871600E-04 1. 1. 1.
  HEADER'8 ZroBXY
451 83 27 15.3 1. 0.01
                          0.00001 ! 3 independent knobs
3D-Cell-fieldMap.table
FConDCoff-3D-fieldMap.table
FCoffDCon-3D-fieldMap.table
  1 482.028 42.172 -20328
                                   ! integration boundary
  \mathbf{2}
  .2
                                   ! integration step size
  2
     0.0 \ 0.0 \ 0.0
                                    ! magnet positioning
  'CHANGREF'
 XS -0.6586 YS -3.2061 ZR -5.0 YS 1.2047
                                                ! magnet positioning
```


ALL FIELD MAPS OUT !

• FA (FB) arc optics:

Two-map cell sequence:

'DRIFT' 5.6 'DRIFT' -18.35'TOSCA' QF 0 0 -9.69871600E-04 1.00E+00 1.00E+00 1.00E+00 HEADER_8 ZroBXY 501 83 1 15.2 1.0. QF-2D-fieldMap.table FCorr-2D-fieldMap.table 0 0 0 0 2 .1 2 0.00E+00 0.00E+00 0.00E+00 'DRIFT' IN -18.35 BS 'DRIFT' 1.2 CORNER 'CHANGREF' ZR -2.50 16 cells ¹⁶ cells 'DRIFT' 4.2 CORNER 'CHANGREF' 24 cells 24 cells 13 cells 14 cells ZA ZR -2.50 ZB 'DRIFT' 1.2 'DRIFT' -18.9 'TOSCA' 0 0 -9.69871600E-04 1.00E+00 1.00E+00 1.00E+00 HEADER_8 ZroBXY 501 83 1 15.1 1.0 501 83 1 15.2 1.0. BD-2D-fieldMap.table DCorr-2D-fieldMap.table 0 0 0 0 2 .1 0.00E+00 3.60319403E-04 0.00E+00 2 'DRIFT' -18.9 'DRIFT' 6.7

SX and RX still under construction

• The 42 MeV spreader line + start of FFAG arc:

• In the code sequence, step by step, replace the analytical models of the quadrupoles and bends by their OPERA field maps

WHY FIELD MAPS FOR CONVENTIONAL OPTICS?

- Spreader line magnets are short: they large gap/width, gap/length,
- and in addition: they have fancy chamfers, shimming

• The 42 MeV spreader line S1 from linac exit to start of arc FA:

(former FFAG arc test optics, early 2018)

THANK YOU FOR YOUR ATTENTION

BIBLIOGRAPHY

- BNL-Cornell collaboration and documents
- CBETA CDR

• F. Méot, et als., Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac, NIM A 896 60-67 (2018)

• F. Méot, N. Tsoupas, Using field maps to track CBETA, FFAG'18 Workshop, Kyoto University (10-14 Sept. 2018).

https://indico.rcnp.osaka-u.ac.jp/event/1143/contributions/1178/

BACKUP SLIDES

Parameter	Value	Unit
Largest energy	150	MeV
Injection energy	6	MeV
Linac energy gain	36	${ m MeV}$
Injector current (max)	40	mA
Linac passes	8	4 accel. + 4 dece
Energy sequence in the arc	$42 \rightarrow 78 \rightarrow 114 \rightarrow 150 \rightarrow 114 \rightarrow 78 \rightarrow 42$	${ m MeV}$
RF frequency	1300.	MHz
Bunch frequency (high-current mode)	325.	MHz
Circumference harmonic	343	
Circumference length	79.0997	m
Circumference time (pass 1)	0.263848164	$\mu {f s}$
Circumference time (pass 2)	0.263845098	μs
Circumference time (pass 3)	0.263844646	$\mu { m s}$
Circumference time (pass 4)	0.265003298	$\mu { m s}$
Normalized transverse rms emittances	1	$\mu{ m m}$
Bunch length	4	\mathbf{ps}
Typical arc beta functions	0.4	m
Typical splitter beta functions	50	m
Transverse rms bunch size (max)	1800	$\mu { m m}$
Transverse rms bunch size (min)	52	$\mu { m m}$
Bunch charge (min)	1	\mathbf{pC}
Bunch charge (max)	123	\mathbf{pC}

 Table 1.2.1: Primary parameters of the Cornell-BNL ERL Test Accelerator.

• Accuracy of step-wise tracking ? A non-issue

 10^5 -turn phase spaces, case of single full-cell 2D field map

Horizontal phase space observed in long drift. Excursions are in 10 mm range.

drift. Excursions are in mm range.