

FFA - Injection and Code Comparison

C. Rogers, C. Brown, J. Pasternak, C. Prior, J.B. Lagrange, S. Machida

Introduction

- Injection into FFA has been done with H- and charge exchange injection
- Synchrotrons typically use phase space painting techniques
- Can we apply phase space painting techniques in FFA?
 - Particular application to 3 MeV
- Charge exchange injection at 3 MeV
- Injection scheme into horizontal FFA using pulsed magnets
- Code comparison between OPAL, FIXFIELD (JB Lagrange) and SCODE (S Machida)
- Injection scheme into vertical FFA using pulsed magnets

Injection Schemes

- Considering two injection schemes
 - Proton injection with tilted septum and phase space painting
 - C. Prior studying optimisation of painting scheme
 - May require tune control during injection
 - H- charge exchange injection
 - C. Brown (Brunel) studying foil physics at 3 MeV

Injection

- Basic scheme is to inject H- ions through a foil
- Foil strips the electrons so we get H+ ions
- Accumulate a beam by painting over many turns
 - Slowly moving the recirculating beam so that we can "paint" an emittance
- Foil:
 - What thickness of foil is required?
 - Keep it as thin as possible to reduce scattering
 - How hot does the foil get?
- Magnets:
 - Can we inject the beam in short straight sections?
 - What field is required?
 - What are the requirements on power supply?

Scaling (horizontal) FFA Injection

Injection From Outer Radius

Energy	3 MeV – 12 MeV	
Tune	0.1932 (h), 0.2404 (v)	
Number of cells	15	
Radius	4.0 – 4.8 m	
k	7.2	
Spiral Angle	41°	

(S. Machida)

Bump Magnets

- Challenging to find space for bump magnets in a single cell
- Spread magnets over several cells
 - Phase advance ~ 78° per cell
- Use 4 magnets
 - One magnet to control position of H+ relative to the foil
 - One magnet to control position of H⁻ relative to injection line
 - Two magnets to capture H⁺ back onto closed orbit (x, x')
- Two injection schemes:
 - From outer radius using bump magnets in cell -1, 0, 1, 2
 - From inner radius using septum and bump magnets in cell -1, 0, 1, 2

Injection From Outer Radius

Injection From Inner Radius

Field Strengths

Inject from inner radius

Option 1 - ring tune/DA

- Option 1
- Significant vertical tune excursion
- Reduced vertical DA (note log scale)
 - Nb dipole fieldmap vertical aperture is 0.2 m
 - Dipole field expanded to 3rd order off-axis with fringe field 10 mm long

Tune dependence

- Tune vs angle
- Tune vs fringe field

DA dependence

- DA independent of angle
- DA quite independent of bump fringe field extent
- What is causing DA?

What drives dynamic aperture

- What drives dynamic aperture?
 - Vertical tune distortion?
- Nonetheless, optics design meets requirements
- Needs study with "realistic" magnets

VFFA - Code Comparison

VFFA simulation

- VFFA modelled using usual field expansion
- Track using 4th order Runge Kutta
- OPAL (A. Adelmann et al; FFA mods by C Rogers)
 - Fields are placed in 3D world
 - Particle tracking occurs in 3D world with time as independent variable
- SCode (S. Machida) and FIXFIELD (JB Lagrange)
 - Fields are placed relative to a nominal axis, corresponding to half cell
 - Overlapping fields from neighbouring cells are added
 - Track through half cell
 - FIXFIELD integrates through s
 - Reference particle coordinates
 - SCODE integrates through z
 - Nominal coordinate system for each half cell
 - Rotate into coordinate system of next half cell

OPAL Geometry vs SCode/FIXFIELD

Comparison of Tracking

Tune Calculation

- Numerically calculate transfer matrix
 - Track particles at a small deviation from reference
- Decouple into 2D transfer matrices
 - E.g. Parzen routines
- Calculate tune of each transfer matrix
- OPAL
 - Coordinate system is r, y
- Scode, FixField
 - Coordinate system is transverse to reference trajectory

Tune - OPAL

Tune comparison

	u tune	v tune
SCODE+	0.184701	0.231858
FIXFIELD	0.18388	0.23218
MUON1	0.187858	0.230659
OPAL	0.17665	0.23876

VFFA - Injection

Questions about injection

- Is there a feasible injection scheme for vFFA?
 - Can we do a multi-cell bump scheme?
 - Note shorter straights/big fringe field/no symmetry plane
 - Do we need stronger bump magnets?
 - Is vertical injection or horizontal injection preferred?
 - Any dynamic aperture issues as was seen in hFFA?
- Try to do something
 - Consider vertical injection first
 - Assume foil and magnetic septum first
 - Nb: most of these things are not dependent on details of the lattice optics (to 0th order)

July Baseline

- 10 cell FODO lattice
- Two pairs of rotated rectangular vFFA magnets in each cell
- 3 MeV injection
- Some tuning to get similar tune to Shinji

Layout

- Vertical bumper to control H-
- Vertical bumper to control position on foil
- Vertical bumper to catch (y and y')
- Each vertical bumper has a corresponding horizontal bumper
 - Correct horizontal displacement at end of the magnet

Elevation

- Different colours correspond to different magnet settings
 - Not much clearance for septum

Bump fields

- Bump fields not varying monotonically
 - Underconstrained?

Charge Exchange Injection at 3 MeV

Charge Exchange at 3 MeV

Model breaks down at low E - Born approximation not valid

Charge Exchange at 3 MeV

Thin foils to reduce scattering – challenges with handling/etc

Conclusions

- Painting in scaling FFA looks feasible
 - Reduction in vertical DA from kicker dipoles needs care
- Painting in VFFA looks feasible
 - Multi-cell injection looks possible
 - Need to evaluate effect on DA of bump magnets
- Charge-exchange injection looks possible at 3 MeV
 - Very thin foils are optimal
 - Handling issues may be a challenge
 - Need to evaluate heat load on the foil
 - Need to evaluate scattering on the foil

Backup

VFFA Injection Optimisation

- Try up to 5 cm vertical bump
 - From -2 cm to 3 cm
 - -2 cm corresponds to beam on closed orbit
 - Based on experience from hFFA scheme
- Try 0.1 T bump for catching H-
 - Based on specification to hardware designers
 - 10 cm long spec was 30 cm
- Try to optimise to ~ 100 micron
- Allow up to 1000 iterations
 - Algorithm finishes after few hundred
 - Never quite converges
 - Should be under constrained

Vertical arrangement

Beam into page

Vertical arrangement

Vertical arrangement

