The Muon g - 2 Experiment at Fermilab

Aaron Fienberg PSI 1 April 2019

Introduction and Motivation

a_{μ} is predictable using the Standard Model

QED

HVP HLbL g_{μ} -

Electroweak

 $\overrightarrow{m} = \frac{ge}{2m} \overrightarrow{s}$

7

a_{μ} is predictable using the Standard Model γ_{μ} $\gamma_{$

QED

- known to five loops
- < 1 ppb precision
- dominant contribution

HVP

- from R-ratio data
- ~0.5% precision

٠

60 ppm contribution

HLbL

- "most challenging"
- 25% precision
- ~1 ppm contribution

Electroweak

- known to two loops
- 0.7% precision
- ~1 ppm contribution

a_{μ} is **predicted** to ~350 ppb

$$a_{\mu}^{SM} = (11659182.04 \pm 3.56) \times 10^{-10}$$

significant deviations indicate new physics

number from Keshavarzi et al., 2018

a_{μ} has been **measured** to 540 ppb

 a_{μ}^{exp} $a_{\mu}^{SM} = (26.6 \pm 7.2) \times 10^{-10}$

New physics interpretations include:

- supersymmetry
 - Czarnecki and Marciano. Phys. Rev., D64:013014, 2001

• dark photons

- Pospelov, Phys. Rev., D80:095002, 2009
- light scalar particles
 - Chen et al. Phys. Rev., D98(3):035006, 2016
- axion-like pseudoscalar particles
 - Marciano et al. Phys. Rev., D94(11):115033, 2016
- vectorlike fermions
 - Crivellin et al. Phys. Rev., D98(11):113002, 2018
- the not-yet invented.
- ... but the discrepancy must be verified!

E989 experiment's goal is 140 ppb

- independent confirmation
- improved precision
- designed for a definite result
- requires $\sim 10^{12}$ stored muons
- in parallel:
 Muon g 2 Theory Initiative

The a_{μ} Measurement Technique

 a_{μ} is extracted from anomalous precession in a magnetic storage ring

 a_{μ} is extracted from anomalous precession in a magnetic storage ring

$$\overrightarrow{\omega_s} = -\frac{ge\overrightarrow{B}}{2m} - (1-\gamma)\frac{e\overrightarrow{B}}{m\gamma}$$
$$\overrightarrow{\omega_c} = -\frac{e\overrightarrow{B}}{m\gamma}$$
$$\overrightarrow{\omega_c} = -\frac{e\overrightarrow{B}}{m\gamma}$$

 $\boldsymbol{\omega}_{\boldsymbol{a}} \equiv \boldsymbol{\omega}_{\boldsymbol{s}}^{T} - \boldsymbol{\omega}_{\boldsymbol{c}}^{T} = \boldsymbol{a}_{\boldsymbol{\mu}} \frac{\boldsymbol{\sigma}_{\boldsymbol{\mu}}}{m}$

applies for motion entirely perpendicular to a perfectly uniform field

a_{μ} is extracted from anomalous precession in a magnetic storage ring

$$\overrightarrow{\omega_s} = -\frac{ge\vec{B}}{2m} - (1-\gamma)\frac{e\vec{B}}{m\gamma}$$
$$\overrightarrow{\omega_c} = -\frac{e\vec{B}}{m\gamma}$$

$$\overrightarrow{\boldsymbol{\omega}_{a}} \equiv \overrightarrow{\boldsymbol{\omega}_{S}} - \overrightarrow{\boldsymbol{\omega}_{c}} = \boldsymbol{a}_{\mu} \frac{e\overrightarrow{B}}{m}$$

applies for motion entirely perpendicular to a perfectly uniform field

${m B}$ is measured with proton NMR

 $\boldsymbol{B} = \frac{\hbar}{2\mu_p} \omega_p$

$$\widetilde{\boldsymbol{B}} = \frac{\hbar}{2\mu_p} \widetilde{\omega_p}$$

distribution-weighted value, $\widetilde{\omega_p}$

will be measured to 70 ppb

a_{μ} is related to $\omega_a/\widetilde{\omega_p}$ and well-known constants

$$\boldsymbol{a}_{\boldsymbol{\mu}} = \frac{m_{\boldsymbol{\mu}}}{eB} \boldsymbol{\omega}_{\boldsymbol{a}}$$

$\boldsymbol{\omega}_{a}$ is measured through e^{+} from muon decay

 $\rho_r(E,t) = N_r(E)[1 + A_r(E)\cos(\theta)]$

 θ relative to muon spin

high-energy e^+ emitted along spin

lab frame spectrum is time-dependent

decay distribution of e^+ in the **muon rest frame**

ω_a is measured through e^+ from muon decay

decay e^+ energy spectrum in the lab frame

ω_a measurement requires polarized muons

- 8 GeV protons impact π^+ production target
- 3.1 GeV positive particles are selected
- pions decay to muons along beamline
- excess protons removed in delivery ring (time-of-flight separation)
- 95% polarized muon beam injected into E989 storage ring
- 11.4 Hz average injection (fill) rate
- ~10,000 stored muons per fill
- muons observed for > 10 lifetimes

The inflector and kickers enable beam injection

the inflector:

- cancels fringe field of storage magnet
- opens field-free channel for injection

kickers

the kickers:

- are pulsed electromagnets
- fire on the first turn after injection
- provide ~11 mrad radial deflection
- should be on and off in < 150 ns

Electrostatic quadrupoles focus vertically

with electric field:

$$\overrightarrow{\boldsymbol{\omega}_{\boldsymbol{a}}} = -\frac{e}{m} \left[\boldsymbol{a}_{\boldsymbol{\mu}} \overrightarrow{B} - \left(\boldsymbol{a}_{\boldsymbol{\mu}} - \frac{1}{\gamma^2 - 1} \right) \frac{\overrightarrow{\beta} \times \overrightarrow{E}}{c} \right]$$

Electrostatic quadrupoles focus vertically

"magic" momentum: $\gamma \approx 29.3$ $p_0 \approx 3.094 \ GeV/c$

Calorimeters catch high energy decay positrons

- 24 evenly-spaced calorimeters
- large acceptance (80%) for high-energy positrons
- report energies and times of incident positrons

Positron time-spectra "wiggle" at ω_a

 $\rho(E,t) \propto e^{-\frac{t}{\gamma\tau}} N(E) [1 + A(E) \cos(\omega_a t - \phi)]$

calorimeter spectra are fit for ω_a

aim to extract ω_a with:

- 100 ppb statistical uncertainty
- 70 ppb systematic uncertainty

Collapsing the energy axis creates a one-dimensional time spectrum

$$f(t) = \int_{E_T}^{\infty} w(E) \cdot \rho(E, t) \, dE$$
$$f(t) = N_0 e^{-\frac{t}{\gamma \tau}} \left[1 + \frac{\langle wA \rangle}{\langle w \rangle} \cos(\omega_a t - \phi) \right] \text{ five-parameter function}$$

E989 employs multiple weighting schemes

$$\left(\frac{\sigma_{\omega_a}}{\omega_a}\right)^2 = \frac{2\langle w^2 \rangle}{N_e + \langle wA \rangle^2 \gamma^2 \tau_{\mu}^2 \omega_a^2}$$

• w(E) = 1: T-Method (baseline)

•
$$w(E) = E$$
: Q-Method

• w(E) = A(E): A-Weighted (optimal)

differing systematics; all will be conducted

E989 employs multiple weighting schemes

100 ppb statistical uncertainty requires $160 \times 10^9 e^+$

$$\frac{\sigma_{\omega_a}}{\omega_a} \bigg)^2 = \frac{2\langle w^2 \rangle}{N_e + \langle wA \rangle^2 \gamma^2 \tau_\mu^2 \omega_a^2}$$

•
$$w(E) = 1$$
: T-Method (baseline)

•
$$w(E) = E$$
: Q-Method

• w(E) = A(E): A-Weighted (optimal)

differing systematics; all will be conducted

Beam Dynamics and Systematic Errors

A time-dependent phase biases ω_a

$$\cos(\omega_a t - \phi) = \cos\left[\omega_a t - \phi_0 - \frac{\mathrm{d}\phi}{\mathrm{d}t}t + \mathcal{O}(\frac{\mathrm{d}^2\phi}{\mathrm{d}t^2})\right]$$
$$= \cos\left[\left(\omega_a - \frac{\mathrm{d}\phi}{\mathrm{d}t}\right)t - \phi_0 + \mathcal{O}(\frac{\mathrm{d}^2\phi}{\mathrm{d}t^2})\right]$$
$$= \cos\left[\omega'_a t - \phi_0 + \mathcal{O}(\frac{\mathrm{d}^2\phi}{\mathrm{d}t^2})\right]$$

70 ppb implies:

- $\frac{d\phi}{dt}$ < 0.07 mrad / 700 μs
- time shifts < 50 ps / 700 μs

"early-to-late" effects include:

- beam distortions
- muon losses
- varying lifetimes
- rate-dependent reconstruction

$$n \approx 0.1 \propto \left(\frac{dE}{dy}\right) \frac{R_0}{B_0}$$

$$R \approx R_0 \left[1 + \frac{1}{1-n} \left(\frac{\Delta p}{p_0} \right) \right]$$

$$\omega_c \approx \omega_{c,0} \left[1 - \frac{1}{1-n} \left(\frac{\Delta p}{p_0} \right) \right]$$

$$y(t) \approx A_y \cos(\sqrt{n} \omega_c t - \phi_y)$$

$$x(t) \approx A_x \cos(\sqrt{1-n}\omega_c t - \phi_x)$$

	symbol	value
cyclotron	f_c	6.7 MHz
precession	f _a	0.2 MHz
radial	f_x	6.3 MHz
vertical	f_y	2.2 MHz
СВО	$f_c - f_x$, f_{CBO}	0.4 MHz
vertical waist	$f_c - 2f_y$, f_{vw}	2.3 MHz

potential issues:

- changing *n* value
- changing momentum distribution
- decoherence

Not all muons are at the "magic momentum"

$$\overrightarrow{\boldsymbol{\omega}_{a}} = -\frac{e}{m} \left[\boldsymbol{a}_{\mu} \vec{B} - \left(\boldsymbol{a}_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

- momentum distribution must be measured
- extracted from cyclotron frequencies
 - "debunching"
- ~500 ppb "electric field" correction
- target **30 ppb** systematic from correction

Not all muons are at the "magic momentum"

momentum ↔ equilibrium radius

$$\overrightarrow{\boldsymbol{\omega}_{a}} = -\frac{e}{m} \left[\boldsymbol{a}_{\mu} \overrightarrow{B} - \left(\boldsymbol{a}_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\overrightarrow{\beta} \times \overrightarrow{E}}{c} \right]$$

- momentum distribution must be measured
- extracted from cyclotron frequencies
 - "debunching"
- ~**500 ppb** "electric field" correction
- target **30 ppb** systematic from correction

Detectors can introduce early-to-late effects

changing gains move the energy threshold, shift the observed phase

must avoid time-dependent gain perturbations
Detectors can introduce early-to-late effects

Detectors can introduce early-to-late effects

results from toy MC

corrected deadtime must be below 1 ns

gain must be stable to better than 0.05%

38

Detectors can introduce early-to-late effects

results from toy MC

corrected deadtime must be below 1 ns

gain must be stable to better than 0.05%

these targets drove the E989 calorimeter design

The E989 Calorimeter

June 2013

Segmented PbF₂ Calorimeter with SiPMs

- SiPM readout designed at CENPA (UW)
- one per crystal
- 54 per calo, 1296 channels total
- ~10 ns pulses, operate in B field

- PbF₂ grown by SICCAS
- dense Cherenkov radiator
- 2.5 cm by 2.5 cm by 14 cm
- 6 x 9 array

Laser system enables gain tracking and time synchronization

- feeds each calo channel
- per-fill time sync pulse
- in-fill, out-of-fill gain tracking
- dedicated systematic tests
- rigorous source monitoring

SiPM waveforms are digitized at 12-bit, 800 MS/s

digitized calorimeter island

- continuous digitization during muon fills
- \sim 40 ns islands saved for each pulse
- islands are initial input to reconstruction, ω_a analysis
- reconstruction produces energies, times from islands

Pulses are fit with individualized templates

example SiPM templates

- dedicated templates for each channel
- separate laser, beam templates
- template stability verified, monitored
- enables fast multi-pulse fitting
- 2.5 ns fitting deadtime

Pulses are fit with individualized templates

Aaron Fienberg | PSI

- multiple clustering algorithms
- position reconstruction
- optional spatial pileup separation
 - ~70% separation efficiency

The calorimeter exceeds design specifications

selected test beam results

five technical publications on calorimeter development

Aaron Fienberg | PSI

Experiment Status and Analysis Progress

All frequency results are blinded

- digitizer frequency shifted by unknown value in range of ± 25 ppm
- relative analysis blinding according to:

$$\omega_a(R) = 2\pi \ 0.2291 \ MHz \cdot [1 + (R - \Delta R) \times 10^{-6}]$$

- field and precession analyses independent, different groups,
 - separately blinded
 - neither provides a_{μ} on its own

2017 Commissioning: first ω_a measurement

June 10-11, 2017

 $10^4 e^+$, 0.1% precision

2018 Physics Run: 60-Hour Dataset

April 22-25, 2018

 $10^9 e^+$, 1.2 ppm precision

2018: E989 Physics Run 1 completed

- twice as many muons as BNL
- expect 400 ppb measurement
- analysis in progress
- planning for result this year

Analysis developed with the 60-Hour Dataset

- six analysis teams
- three reconstructions
- many systematic effects

Model with only muon precession is inadequate

Tracking detectors inform beam oscillation models

Detector effects are also significant

time correlated gain changes measured with laser system

Detector effects are also significant

time correlated gain changes measured with laser system unresolved pulse pairs (pileup)

A pileup correction is extracted from the data

A correction for muon losses is required

- L(t) is loss rate
- taken from triple coincidences

•
$$N_0 \rightarrow N_0 \left(1 - \frac{K_{loss}}{0} \int_0^t e^{t'/\tau} L(t') dt'\right)$$

ω_a fit with beam dynamics model and all corrections:

 $\chi^2 / ndf = 4041/4137$ p-value: 0.91

Recent (relative) unblinding shows agreement between all ω_a analyzers

60-h unblinding workshop February 2019

- independent reconstructions
- different treatment of detector and beam dynamics effects
- various fitting procedures
- agreement within allowed statistical variations

Run 1 ω_a systematics appear under control

Uncertainty Source	Run 1 Estimate	Target Value
Beam dynamics		
Lost muons*	< 125 ppb	20 ppb
СВО	30 ppb	30 ppb
E-field and pitch*	< 70 ppb	30 ppb
Detector effects		
Gain changes*	< 60 ppb	20 ppb
Pileup	20 ppb	40 ppb
Total	< 160 ppb	70 ppb

compare to projected: 350 ppb statistical uncertainty, 140 ppb* magnetic field uncertainty

*separate analyses by dedicated teams, in progress

Next steps

- mature analysis tools will be applied to all Run 1 data
- if all goes well, final internal reviews will occur this summer
 on track so far
- Run 2 data collection to begin soon
- thank you!

Backup slides

E989 scientific collaboration

Domestic Universities

- Boston
- Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- Northern Illinois
- Regis
- UT Austin
- Virginia
- Washington
- National Labs
 - Argonne
 - Brookhaven
 - Fermilab

- Frascati
- Molise
- Naples
- Pisa
- Roma 2
- Trieste
- Udine

China

- Shanghai

– Dresden

Germany

- Lancaster
- Liverpool
- University
 College London

- Russia
 - JINR/Dubna

KAIST

CAPP/IBS

– Novosibirsk

Improvements for Run 2

- kicker stability and high voltage
- further beamline optimization
- additional beam injection monitoring detectors
- experiment hall temperature control
- improved magnet temperature stability
Monitoring and Mapping the Magnetic Field

Trolley

Pitch Correction

precession not perpendicular to momentum!

$$C_P = \frac{\Delta\omega_a}{\omega_a} = -\frac{n}{2R_0^2} \left\langle y^2 \right\rangle$$

- ~300 ppb correction
- related to vertical distribution of beam
- measured using trackers
- aim for **30 ppb** systematic

Pileup systematic uncertainty is < 40 ppb

• scale of pileup correction is varied

•
$$\frac{dR}{dPU} \cdot \sigma_{PU} = \sigma_{R,PU}$$

• similar treatments for gain, beam oscillations, muon losses, ...

Consistency check: artificial deadtime scan

Consistency check: artificial deadtime scan

- results consistent within allowed statistical drifts
- correction can remove 1 ppm pileup bias
- power of this technique increases with improved statistical precision