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Getters are materials capable of chemically adsorbing gas molecules

(by chemisorption). To do so, their surface must be clean. 

1 - Introduction

In situ deposition of a fresh getter

film (under vacuum)
Evaporable Getters

Ti filaments
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Getters are materials capable of chemically adsorbing gas molecules

(by chemisorption). To do so, their surface must be clean. 

1 - Introduction

Diffusion of the oxide layer into the

bulk (usually by heating in vacuum

to the activation temperature)

Non Evaporable Getters 

(NEG)

In situ deposition of a fresh getter

film (under vacuum)
Evaporable Getters
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Activation temperature of a NEG 

Heating in vacuum 

Oxide dissolution -> activation

T = Tactivation

T = RT

Native oxide layer Reactive metalic surface

T = RT

No pumping

High desorption rates

NEG pumps most of the gases except noble gases and methane at 

room temperature 

Pumping

low desorption rates

1 - Introduction
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1 - Introduction

Motivation

PSI, 3th of April 2019

Distributed Pumping 

in long beam pipes
𝑃𝑚𝑎𝑥 = 𝑃 0 +

𝑄𝑡𝑜𝑡𝑎𝑙
8𝐶
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1 - Introduction

Motivation
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Distributed Pumping 

in long beam pipes

Cross section of the LEP dipole vacuum chamber

Why?...

NEG strip

𝑃𝑚𝑎𝑥 = 𝑃 0 +
𝑄𝑡𝑜𝑡𝑎𝑙
8𝐶
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1 - Introduction

Motivation
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Distributed Pumping 

in long beam pipes

Cross section of the LEP dipole vacuum chamber

Why?...

NEG strip

NEG

coating

Cross section of the LHC warm dipole vacuum chamber

Cristoforo Benvenutti

Transform the vacuum 

chamber into a pump
Low induced outgassing

Low secondary electron yield
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2 – NEG properties & performances
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NEG materials:

high oxygen

Solubility and diffusivity
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2 – NEG properties & performances

PSI, 3th of April 2019

NEG materials:

NEG coatings have been produced by Magnetron Sputtering of elements and

alloys from the IV and V group of the periodic table.

The thin films were produced in a triple DC magnetron coating system: 

More than 20 materials were investigated by combining 2 or 3 of this elements 

in the form of thin films.
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NEG materials:

NEG coatings have been produced by Magnetron Sputtering of elements and

alloys from the IV and V group of the periodic table.

More than 20 materials were investigated by combining 2 or 3 of this elements 

in the form of thin films.
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NEG materials:

In 2002, Ti-Zr-V was retained for large scale production for the LHC.

Activation: 24 hours at 180oC.

ZrV

Ti

30 40 50 60

TiZrV

Substrate

 (degrees)

30 40 50 60

TiZrV
Nanocrystalline

grain size 3~5 nm

Well crystallised

grain size ≥ 100 nm

good

bad

2 – NEG properties & performances
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2 – NEG properties & performances

Measure the pumping speed of a thin film: aperture method 

c

P1 P2

RGA

Pumping

group

Getter disk

(flange)

Gas injection

(H2, CO, ..)

𝑆𝑔𝑒𝑡𝑡𝑒𝑟 = 𝑆𝑎 =
𝑃1 − 𝑃2
𝑃2

𝑐

𝑆𝑎

𝑆𝑔𝑒𝑡𝑡𝑒𝑟 = 𝐴
𝑘𝑇

2𝜋𝑚
𝑠

𝑠 =
𝑃1 − 𝑃2
𝑃2

𝑐
1

𝐴

2𝜋𝑚

𝑘𝑇

Pumping speed dome
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2 – NEG properties & performances
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2 – NEG properties & performances

Measure the pumping speed of a thin film: aperture method 

c

P1 P2
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Gas injection

(H2, CO, ..)
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Pumping speed and surface capacity of TiZrV. (activation 24h@230oC)

coated at 100oC coated at 300oC

2 – NEG properties & performances
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2 – NEG properties & performances

Measure the pumping speed of a thin film: 

c
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RGA

Pumping

group

Gas injection

(H2, CO, ..)

𝑆𝑎

Getter tube
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R
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=
𝑃3
𝑃2

Pressure ratio
Monte Carlo 

simulation

If pressure ratio too low:

very high P2 is necessary to get signal in P3

Cool down 

with Liquid N2

transmission method 
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If using CO => fast saturation at the entrance

If using H2 => dissociation of H2 in hot filament => methane
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TiZrV/St. Steel
5 m thick

Ageing: loss of pumping speed with successive air venting cycles

2 – NEG properties & performances
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Photon Stimulated Desorption (PSD)

Yasunori Tanimoto

KEK

Marton Ady

CERN

@ KEK Photon Factory, Japan

2 – NEG properties & performances
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Photon Stimulated Desorption (PSD)

2 – NEG properties & performances
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3 – Production of NEG coatings

At CERN

The LHC: more than 1300 beam pipes coated.
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ESRF (France) SAES getters

(Italy)

GSI (Germany)

NEG coating producers

KEK (Japan)

LNLS (Brazil)

FMB Berlin (Germany)

3 – Production of NEG coatings
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Worldwide users of NEG coatings

CERN

ESRF
ELECTRA

SOLEIL
DESYDIAMOND

MaxLab

BNL

LNLS

KEK

NSRRC

AS

ISA

ALBA

SESAME

ILSF

ANL

in design/study

3 – Production of NEG coatings
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NEG coatings for ESRF (2001)

The coating system was then dismantled: ESRF

and SAES became the experts on high aspect

ration chambers. No CERN demands for these

type of chambers.

R. Kersevan, Proc. EPAC-2000 Conference, Vienna, June 2000, page 

2289-2291, available at 

http://accelconf.web.cern.ch/accelconf/e00/PAPERS/THP5B11.pdf.

ESRF chamber CV5073 (L=5073 mm, 11 mm x 74 mm)

4 – Application to synchrotrons light sources

http://accelconf.web.cern.ch/AccelConf/e00/PAPERS/THP5B11.pdf
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NEG coatings for MAX IV (2013 – 2015)

e-beam

photon-beam VC2L

20 chambers of each 

model coated @CERN

4 – Application to synchrotrons light sources
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NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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Thickness uniformity 

4 – Application to synchrotrons light sources

Sputtered atoms leave the target with a cosine distribution
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Thickness uniformity 

4 – Application to synchrotrons light sources

Cross section:
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Thickness uniformity 

4 – Application to synchrotrons light sources

Cross section:
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Calculated thickness profile for 100 mm slab

Which cathode gives the most uniform thickness profile?
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Thickness uniformity 

4 – Application to synchrotrons light sources

Longitudinal:
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Chamber:

• ID22 mm

• L=2.3 m

• Angle 3o

• curvature radius 19 m

Coating:

• Pressure 0.11 mbar

• Magnetic field 180 Gauss

• Power density 25W/m

Ti

Al2O3

Ceramic spacer

NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources

Use “short” solenoids? (plasma distribution)
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NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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Chamber:

• ID22 mm

• L=2.3 m

• Angle 3o

• curvature radius 19 m

Coating:

• Pressure 0.11 mbar

• Magnetic field 180 Gauss

• Power density 25W/m

NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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VC2a

VC2b

NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources



Vacuum, Surfaces & Coatings Group

Technology Department 41
PSI, 3th of April 2019

NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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Requires high 

power

“spread” the plasma

along the cathode

1st problem:

NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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1st problem:

“spread” the plasma

along the cathode

Requires high 

power

wrong 

stoichiometry

(too much V)

Incomplete activation
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NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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1st problem:

“spread” the plasma

along the cathode

Requires high 

power

wrong 

stoichiometry

(too much V)

Magnetic 

field

Pressure Power

Incomplete activation

NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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1st problem:

“spread” the plasma

along the cathode

Requires high 

power

wrong 

stoichiometry

(too much V)

Incomplete activation

NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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Photon chambers:

• From 6x11 mm to 7x34 mm

• L=300 (435) mm

• Pressure 0.66 mbar

• Magnetic field 500 Gauss

• Power Density 25 W/m

Electron chambers:

• ID22 mm

• L=300 (435) mm

• Pressure 0.06 mbar

• Magnetic field 180 Gauss

• Power Density 25 W/m

NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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Electron chambers:

• ID22 mm

• L=300 (435) mm

• Pressure 0.06 mbar

• Magnetic field 180 Gauss

• Power Density 25 W/m

Photon chambers:

• From 6x11 mm to 7x34 mm

• L=300 (435) mm

• Pressure 0.66 mbar

• Magnetic field 500 Gauss

• Power Density 25 W/m

few chambers

with ~3 cm2

uncoated area on 

the smaller gap

NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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20 VC2a

21 VC2b

20 VC2L

21 VC1

1 VC2K1

1 VC2K2

Between July 2014 and April 2015

NEG coatings for MAX IV (2013 – 2015)

4 – Application to synchrotrons light sources
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What is the required thickness? => minimize beam impedance

4 – Application to synchrotrons light sources

Coat films with different thicknesses: 30 nm, 90 nm, 200 nm, 1100 nm.

(Motivation: minimize impedance for the Future Circular Collider) 

Reduction of oxygen after 4 

venting/activation cycles
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4 – Application to synchrotrons light sources

Coat films with different thicknesses: 30 nm, 90 nm, 200 nm, 1100 nm.

(Motivation: minimize impedance for the Future Circular Collider) 

Reduction of oxygen after 4 

venting/activation cycles

Secondary electron yield after 

4 venting/activation cycles

200 nm is 

enough
4x venting/activation 

cycles

What is the required thickness? => minimize beam impedance



Vacuum, Surfaces & Coatings Group

Technology Department 53
PSI, 3th of April 2019

4 – Application to synchrotrons light sources

What is the evolution of the PSD from a 200 nm film in function of 

venting/activation cycles?

Yasunori Tanimoto

KEK

Marton Ady

CERN

@ KEK Photon Factory, Japan

What is the required thickness? => minimize beam impedance
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4 – Application to synchrotrons light sources

What is the evolution of the PSD from a 200 nm film in function of 

venting/activation cycles?

NO SR 

irradiation
NO SR 

irradiation
No NEG 

activation

What is the required thickness? => minimize beam impedance
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4 – Application to synchrotrons light sources

What is the evolution of the PSD from a 200 nm film in function of 

venting/activation cycles?

PSD increase slightly if no irradiation

PSD decrease with 

venting/activation/irradiation cycles

PSD without activation gets better!

What is the required thickness? => minimize beam impedance
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4 – Application to synchrotrons light sources

What is the evolution of the PSD from a 200 nm film in function of 

venting/activation cycles?

1st cycle

No activation

What is the required thickness? => minimize beam impedance
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5 – Summary & final remarks
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• NEG coatings can provide distributed pumping speed and low PSD, (and 

in addition low Secondary Electron Yield), and are now present in several 

kilometres of accelerators beam pipes all around the world.

• Sputtering have proven high “versatility”, allowing to coat chambers with 

apertures ranging from 500 mm to 6 mm and different geometries.

• Thickness uniformity: at CERN, coating beam pipes with apertures down 

to 6 mm is still not fully mastered. Optimization requires the change of 

“standard” parameters… or the fabrication process of the chamber (“inverse 

NEG”)

• Minimum thickness: down to 200 nm, the NEG is robust against air 

venting/activation cycles (tested up to 10; always goes down after 

irradiation). Thinner to be tested…

• Adhesion (no tackled): surface treatment before coating is crucial!

NEVER DISREGARD THE SURFACE TREATMENT
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Thank you 


