

History

Atomic parity violation in radium

- Weak interaction leads to parity
 violating effects in atomic transitions
 → enhanced in heavy atoms (∝Z³) due
 to large overlap with nucleus
- Extract Weinberg angle using precision atomic calculations
 - → Needs knowledge of the radium charge radius with 0.2% accuracy

Atomic parity violation fixes weak interaction properties at low momentum

Charge radii in nuclear physics

- Large efforts at ion beam facilities to determine charge radii
- Wealth of information on nuclear properties from laser spectroscopy
- Need electron scattering or muonic atom spectroscopy for absolute radii

What about radioactive atoms?

- Most of the stable isotopes have been measured with muonic atom spectroscopy
- In a few special cases also radioactive isotopes, e.g. americium
 - The paper describes the americium target as "modest weight of 1 gram"

Nowadays: 0.2 μg of ²⁴¹Am allowed in experimental hall...

Cannot stop muons directly in microgram targets Need new method!

Our radioactive targets

- ▶ 5.5 µg target material allowed
- ▶ Gamma rate of ~400 kHz from all daughters
- Interest from atomic parity violation

- ▶ 32.6 µg target material allowed
- Heaviest nucleus accessible

Transfer reactions

- Stop in 100 bar hydrogen target with 0.25% deuterium admixture
- Form muonic hydrogen μp
- Transfer to deuterium forming μd, gain binding energy of 45 eV
- Hydrogen gas quasi transparent for μd at
 ~5 eV (Ramsauer-Townsend effect)
- μd reaches target and transfers to μRa
- Measure emitted X-rays from cascade

Inspired by work of Strasser et al. and Kraiman et al.

Simulation of transfer

- Developed simulation to predict efficiency of transfer
- Momentum of beam determines stopping distribution with respect to the target
- Deuterium concentration determines speed of transfer but limits range due to μd+D₂ scattering
- ~1% efficiency for 5 μg radium target expected

Results 2017

- Measurement with 5 μg gold target as proof-of-principle
- Spectrum taken over 18.5 h
- Setup tested with high-rate gamma sources and uranium targets of a few mg

Radioactive targets 2018

- Curium-248 target was made in Mainz by molecular plating method
- Radium-226 target was made at PSI also by molecular plating methods
- Handling and installation of target foils into gas cells was done in a glove box in the laboratories of the radiochemistry at PSI

Measuring radioactive targets

- In the end we did not see any sign of curium x-rays
- Electroplating inherently leads to organic layers on the target
- The fact that we see the outline of the target clearly indicates a reasonably thick layer
- Tried several times to burn away organic layer on curium target, but without success
- For radium there were unexpected issues with the plating
 - → only 1% of required target mass on target foil

Carbon coatings on gold

In order to understand the influence of the organic layer on our measurements prepared gold coatings with 100 and 500 nm carbon coating on top.

Results:

▶ 100 nm: 27% of gold x-rays left

▶ 500 nm: no gold x-rays seen

We are much more sensitive to organic layers than expected!

Developments for 2019 campaign

- Radioactive target developments:
 - Drop-on-demand technique in Mainz (for curium & radium)
 - Intermetallic targets at PSI (for radium)
 - Offline methods to measure O(10 nm) thick layers of organic contamination
- Low-Z target cell to reduce background
- Improved gas handling system to allow pre-mixing of D₂/H₂
- Use of Miniball germanium array

Chemical forms of our targets

Curium-248

- There will be contamination from curium-246 (~5%) → limits ²⁴⁸Cm mass to ~16 µg
- ▶ Curium nitrate: Cm(NO₃)₃
- ▶ Curium oxide: Cm₂O₃
- Curium fluoride: CmF₃
- Transfer properties: oxide > fluoride >> nitrate

▶ Radium-226

Radium nitrate: Ra(NO₃)₂

Radium oxide: RaO

Radium carbonate: RaCO₃

Radium fluoride: RaF₂

Transfer properties: oxide > fluoride > carbonate >> nitrate

Beam request 2019

- ▶ 3.5 weeks of beam time for measurement of charge radius of ²⁴⁸Cm and ²²⁶Ra
 - ▶ 1.5 weeks of setup
 - 2 weeks of data taking
- Beam time for muon capture measurements: 2 weeks of data taking
- Additional test requests using the muX setup:
 - 2s-1s measurements: 1 week
 - Elemental analysis (μSR): 1 week

muX collaboration

A. Adamczak¹, A. Antognini^{2,3}, N. Berger⁴, T. Cocolios⁵, R. Dressler², Ch.E. Düllmann^{4,6,7}, R. Eichler², P. Indelicato⁸, K. Jungmann⁹, K. Kirch^{2,3}, A. Knecht², J. Nuber^{2,3}, A. Papa^{2,10}, R. Pohl⁴, M. Pospelov^{11,12}, E. Rapisarda², D. Renisch^{4,7}, P. Reiter¹³, N. Ritjoho^{2,3}, S. Roccia¹⁴, N. Severijns⁵, A. Skawran^{2,3}, S. Vogiatzi^{2,3}, F. Wauters⁴, and L. Willmann⁹

¹Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

²Paul Scherrer Institut, Villigen, Switzerland ³ETH Zürich, Switzerland ⁴University of Mainz, Germany ⁵KU Leuven, Belgium

 $^6{\rm GSI}$ Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany $^7{\rm Helmholtz}$ Institute Mainz, Germany

⁸LKB Paris, France ⁹University of Groningen, The Netherlands

¹⁰University of Pisa and INFN, Pisa, Italy ¹¹University of Victoria, Canada

¹²Perimeter Institute, Waterloo, Canada

¹³Institut für Kernphysik, Universität zu Köln, Germany
 ¹⁴CSNSM, Université Paris Sud, CNRS/IN2P3, Université Paris Saclay,
 Orsay Campus, France

Backup

Addendum to Proposal

Zinatulina et al., arXiv:1803.10960 (2018)

- Muon capture measurement on nuclei relevant for double beta decay (82Kr, 130Xe)
- Compare measurements to nuclear shell model predictions for ²⁴Mg as a benchmark for NSM to calculate higher mass nuclei
- Measure muon capture rates and branches to the different daughter isotopes

target	enr-ment	composition	element	thickness	
			mass	$ m mg/cm^2$	
$^{-82}\mathrm{Kr}$	99.9%	Kr gas	1.0 l (1 atm.)	37.3	
$^{ m nat}{ m Kr}$	_	Kr gas	1.0 l (1 atm.)	37.3	
$^{130}\mathrm{Xe}$	99.9%	Xe gas	1.0 l (1 atm.)	58.1	
$^{\mathrm{nat}}\mathrm{Xe}$	_	Xe gas	1.0 l (1 atm.)	58.1	
$^{24}{ m Mg}$	99.89%	MgO powder	1.0 g	250	

Background Measurements

Developments for radioactive targets

Printer for drop-on-demand

Raman spectroscopy

▶ Equilibration of D₂ in gas systems takes days/weeks!

Muon Capture Measurements

185Re \$ 187Re spectra

- Hyperfine structure + lowlying nuclear levels
- Highly complicated spectra
- Need very detailed theoretical calculations to extract nuclear properties

Extraction of quadrupole moments

Quadrupole Moments of 185,187Re

▶ Preliminary result on quadrupole moments of ^{185,187}Re

Nucleus	detector	Q (barn)	χ^2_{red}	Relative (%) intensity
$^{185}\mathrm{Re}$	$\begin{array}{c} \operatorname{GeR} \\ \operatorname{GeL} \end{array}$	$2.12(2) \\ 2.03(4)$	2.45 1.50	9.0(8) $14.1(7)$
¹⁸⁷ Re	$\begin{array}{c} \operatorname{GeR} \\ \operatorname{GeL} \end{array}$	$1.97(2) \\ 1.93(4)$	1.83 1.14	12(1) $17.0(7)$

Simulations

a) P_{μ} scan (nominal $c_D = 0.25\%$)

c) c_D scan, modified data

b) T = 50 K, p = 17 bar

d) lower pressure p=50bar

- Impressive precision in the extracted charge radius can be achieved
- For 208 Pb: $< r^2 > ^{1/2} = 5.5031(11)$ fm $2x10^{-4}$ relative precision

TABLE V. Experimental muonic transition energies (keV) in ²⁰⁸Pb (recoil corrected).

	Kessler	Hoehn			
Transition	(Ref. 9)	(Ref. 27)	This experiment		
$2p_{3/2}-1s_{1/2}$	5 962.770(420)		5 962.854(90)		
$2p_{1/2}$ -1 $s_{1/2}$	5 777.910(400)		5 778.058(100)		
$3d_{3/2}$ - $2p_{1/2}$	2 642.110(60)	2642.292(23)	2 642.332(30)		
$3d_{5/2}$ - $2p_{3/2}$	2 500.330(60)	2500.580(28)	2 500.590(30)		
$3d_{3/2}-2p_{3/2}$	2 457.200(200)		2 457.569(70)		
$3p_{3/2}-2s_{1/2}$	1 507.480(260)		1 507.754(50)		
$3p_{1/2}$ - $2s_{1/2}$			1 460.558(32)		
$2s_{1/2}-2p_{1/2}$	1215.430(260)		1215.330(30)		
$2s_{1/2}-2p_{3/2}$	1 030.440(170)		1 030.543(27)		
$5f_{5/2}$ -3 $d_{3/2}$	1 404.740(80)		1 404.659(20)		
$5f_{7/2}$ -3 $d_{5/2}$	1 366.520(80)		1 366.347(19)		
$5f_{5/2}$ - $3d_{5/2}$			1 361.748(250)		
$4f_{5/2}$ -3 $d_{3/2}$	971.850(60)	971.971(16)	971.974(17)		
$4f_{7/2}$ -3 $d_{5/2}$	937.980(60)	938.113(13)	938.096(18)		
$4f_{5/2}$ - $3d_{5/2}$			928.883(14)		
$4d_{3/2}$ - $3p_{1/2}$			920.959(28)		
$4d_{5/2}-3p_{3/2}$			891.383(22)		
$4d_{3/2}-3p_{3/2}$			873.761(63)		

μE1 channel at PSI 5x10⁶ μ⁻/s at 125 MeV/c

Muonic energy levels highly sensitive to nuclear charge distribution due to large overlap

Using QED calculations and model for nuclear charge distribution allows to extract charge radius

Large effect:

$$E_{1s}$$
 (Z=82) ~ 19 MeV (point nucleus) \rightarrow 10.6 MeV (finite size)

- 2p 1s energy is highly sensitive to charge radius
- What is the limiting factor?

- Nuclear polarisation is the dominating factor that in the end determines the accuracy of the extracted charge radius
- Typically assumed uncertainty: 10 - 30%
- Nuclear excitation spectra important
- Looking for theorists that want to tackle these calculations with modern methods

TABLE II. Theoretical nuclear polarization corrections in ²⁰⁸Pb.

			I iicoi ctici		Politica	tion com				
Energy (MeV)	I^{π}	$B(E\lambda)\uparrow (e^2b^{2\lambda})$	ls _{1/2} (eV)	2s _{1/2} (eV)	2p _{1/2} (eV)	2p _{3/2} (eV)	3p _{1/2} (eV)	3p _{3/2} (eV)	3d _{3/2} (eV)	3d _{5/2} (eV)
2.615	3-	0.612	135	12	90	84	26	26	111	-63
4.085	2+	0.318	198	20	182	180	76	84	6	4
4.324	4+	0.155	14	1	8	7	2	2	1	1
4.842	1-	0.001 56	7	1	-9	-8	0	0	1	1
5.240	3-	0.130	27	2	16	15	5	5	2	2
5.293	1-	0.002 04	9	2	-27	-19	0	-1	1	1
5.512	1-	0.003 80	16	3	-90	-53	-1	-1	1	1
5.946	1-	0.00007	0	0	3	-30	0	0	0	0
6.193	2+	0.0505	29	3	22	21	7	7	0	0
6.262	1-	0.00024	1	0	3	5	0	0	0	0
6.312	1-	0.000 22	1	0	3	4	0	0	0	0
6.363	1-	0.000 14	1	0	2	2	0	0	0	0
6.721	1-	0.00075	3	1	6	7	0	-1	0	0
7.064	1-	0.001 56	6	1	9	11	-1	-1	0	0
7.083	1-	0.00075	3	1	4	5	-1	-1	0	0
7.332	1-	0.002 04	8	1	10	11	-2	-2	0	0
Tota	l low-lyi	ing states	458	48	233	242	111	117	123	- 53
13.5	0+	0.047 872	906	315	64	38	24	15	1	0
22.8	0+	0.043 658	546	147	43	26	15	10	0	0
13.7	1-	0.537 672	1454	221	786	738	255	258	66	54
10.6	2+	0.761 038	375	37	237	222	67	68	33	30
21.9	2+	0.566 709	207	21	108	99	29	29	8	7
18.6	3-	0.497 596	77	7	40	36	11	11	3	2
33.1	3-	0.429 112	53	5	25	23	7	7	2	1
	$> 3^{a}$		176	15	80	71	21	21	4	4
Total	l high-ly	ing states	3794	768	1383	1253	429	419	117	98
	Tota	ıl	4252	816	1616	1495	540	536	240	45

^aValues from Ref. 7. Positive NP values mean that the respective binding energies are increased.

Bergem et al., PRC 37, 2821 (1988)

Scattering cross sections

- Scattering on deuterium does not show a Ramsauer-Townsend minimum
- Need to be careful to not have too much deuterium in the gas mixture

Muon catalysed fusion

- Lot of experience on behaviour of muons in hydrogen gas due to past work on muon catalysed fusion
- Most efficient cycle: d-t fusion, up to 150 fusions per muon
- Not enough for energy break-even

100 bar hydrogen target

- Target sealed with 0.6 mm carbon fibre window plus carbon fibre/titanium support grid
- Target holds up to 350 bar
- ▶ 10 mm stopping distribution (FWHM) inside 15 mm gas volume
- Target disks mounted onto the back of the cell

Entrance & veto detectors

34

- Entrance detector to see incoming muon
- Veto scintillators to form anticoincidence with decay electron

Germanium array

- ▶ 11 germanium detectors in an array from French/UK loan pool, Leuven, PSI
- First time a large array is used for muonic atom spectroscopy

Array Detection Efficiency

Experimental setup 2017/2018

Energy vs. time spectra

- DAQ is free-running and recording every detector with a timestamp
- Sorting germanium detector hits in time after muon entrance hit

Understanding target conditions

Target	Size	Backing	N_{γ} / N_{μ}	ϵ
50 nm Au	$4.9 \; {\rm cm}^2$	Cu	$(10.9 \pm 0.3) \times 10^{-5}$	10.0%
10 nm Au	$4.9~\mathrm{cm}^2$	Cu	$(6.9 \pm 0.2) \times 10^{-5}$	6.3%
3 nm Au	$4.9~\mathrm{cm}^2$	Cu	$(3.6 \pm 0.1) \times 10^{-5}$	3.3%
3 nm Au	$4.9~\mathrm{cm}^2$	kapton	$(3.2 \pm 0.1) \times 10^{-5}$	2.9%
3 nm Au	1 cm^2	Cu	$(1.3 \pm 0.1) \times 10^{-5}$	1.2%

- Detected 2p-1s gammas per incoming muon for various targets
- Not all µd converted in thin targets
- Impact of backing material small
- Can still reliably see gammas from 5 μg gold target (1 cm², 3 nm)

Measurement with uranium

- Measurement with ~5 mg uranium as a test for handling radioactive materials in our setup
- Complicated spectrum due to hyperfine splitting plus low-lying nuclear excitations
- ▶ 226Ra will look very similar

Close et al., Phys. Rev. C 17, 1433 (1978)

Similar performance as in the past but a factor 10⁵ less target material

Measurement with high rates

- Performed measurements with strong 88Y source producing 420 kHz gammas comparable to 226Ra target
- Able through offline analysis to improve energy and time resolution
- DAQ able to cope with data rate

Experiment is ready for measurements with radioactive targets!

Making radium target

- ▶ Attempted a measurement of ²²⁶Ra and ²⁴⁸Cm this year
- ▶ Electroplating the ²²⁶Ra out of the isopropanol solution onto gold plated copper foil

Measuring radium target

- We knew that we had lost a lot of radium in the target making process plus target had a large organic contamination
- Mounted target anyway but immediately saw that we had only 1% of the required target mass...
- Measured for a while, but clearly saw nothing

Alpha Spectrum

- Alpha spectrum measurements can reveal some hints on source thickness
- ▶ Tails and unresolved double peak clearly show that we have a "thick" source
- Performed some alpha spectrum simulations but quite a lot of free parameters
- Simulations tend to point towards organic layer of order 500 nm

Elemental analysis with negative muons

- Depth profiling as a function of momentum
- Proof-of-principle with stacks of foils

Safety

Implemented full safety features for handling radioactive targets