

Hanna Eick, Philipp Brand, Christian Mannweiler, Sophia Vestrick, and Alfons Khoukaz

Institute for Nuclear Physics, WWU Münster

In cooperation with the group of O. Willi, HHU Düsseldorf

30th Conference of the International Nuclear Target Development Society INTDS, Switzerland September 25 – 30, 2022

living.knowledge

Horizon 2020 European Union Funding for Research & Innovation

Motivation of Measurements

- Cluster-jet targets are important and central component of several experiments (e.g., for laser induced proton acceleration → ARCTURUS, or hadron physics → PANDA experiment)
- Investigation of target properties and cluster generation process
- Important properties of the targets are the sizes of clusters and the size distribution
 - $\circ~$ Prediction of the beam's time structure
 - $\circ~$ Understanding of the residual gas

Important Experiments with Cluster-Jet Targets

Set-up of Münster Cluster-Jet Targets

- Hydrogen is flowing through purification cartridge and cooled down by two-stage cold head
- Insulation vacuum chamber with turbo pump to ensure a thermal decoupling
- Cooled gas is pressed through laval nozzle with diameter of 37 μm
- Depending on target conditions, different cluster
 production processes occur

Cluster Production Process

 Hydrogen can be either gaseous or liquid in front of the nozzle → leads to different cluster formation processes

Cluster size determination using shadowgraphy measurements

5

Set-up for Shadowgraphy Measurements

- Top view of the experimental set-up
- Cluster-Jet Target, developed and built up in Münster
- Target setting determines:
 - Target beam thickness
 - $\circ~$ Cluster size distribution

Set-up for Shadowgraphy Measurements

- ARCTURUS TW laser system of HHU Düsseldorf
- Ultrashort-pulse laser (30 fs) is used as background lightening
- Pictures of clusters are taken with a camera in combination with a microscope objective
- With longer exposure time clusters at about (200 -1000) m/s would no longer be recognizable as dots

- Shadowgraphy image (background subtracted) with ...
 - \circ some sharp clusters
 - $\circ~$ a lot of interference rings
 - dust on camera and optics (some of this is eliminated by background subtraction)

- Shadowgraphy image (background subtracted) with ...
 - some sharp clusters
 - $\circ~$ a lot of interference rings
 - dust on camera and optics (some of this is eliminated by background subtraction)

- Shadowgraphy image (background subtracted) with ...
 - \circ some sharp clusters
 - $\circ~$ a lot of interference rings
 - dust on camera and optics (some of this is eliminated by background subtraction)

- Shadowgraphy image (background subtracted) with ...
 - \circ some sharp clusters
 - $\circ~$ a lot of interference rings
 - dust on camera and optics (some of this is eliminated by background subtraction)

Cluster Selection Criteria

- For every target setting and position in the cluster beam 1000 pictures were taken → impossible to analyze all by hand
- An automated procedure is required to find potential cluster candidates and to decide with cluster selection criteria whether they are clusters or not
- The image processing program *ImageJ*^[2] is used to identify potential cluster candidates

13

Cluster size determination using shadowgraphy measurements

Cluster Selection Criteria

- Widths of both profiles must be similar in size
- Amplitude of peak must have significant height
- Background must not be too uneven
- Sorted out when light spot (Poisson spot) appears in center → too far away from focal plane

20 40 60

X-Position/px

80

14

Cluster Selection Criteria

- Widths of both profiles must be similar in size
- Amplitude of peak must have significant height

150

100

50

100

50

100

73313.58139777892

2936.960579684539

50

100

75

36.0682779964363

.960579684539

75

54423.538920163344

50

- Background must not be too uneven
- Sorted out when light spot (Poisson spot) appears in center → too far away from focal plane

0

Cluster size determination using shadowgraphy measurements

Calculation of Cluster Diameter

- After identifying real clusters, a 2-dimensional fit is applied which includes the diameter as fit parameter
- By means of a calibration measurement (wire measurement) the camera pixel information is converted into a size information in μm

Cluster Size Distribution

- Cluster size distribution (1000 pictures) for one target setting
- Steeper edge on left side and longer tail on right side → 'real' distribution on right side, but resolution limit on left side

Do we really see the True Distribution?

- To measure depth of every picture, calibration measurements using µm-sized toner particles were performed
- Toner inks were moved at location of target through laser in micrometer steps
- First intention: Look at one specific toner particle and find out in which range it can be found and analyzed

Do we really see the True Distribution?

- The observation made is that the 'toner clusters' look larger the further they are away from the focal plane
- The found distribution is not the true distribution
- Bringing together information from the measured distribution and the toner clusters (deconvolution)

True Cluster Size Distribution

Result with assumption that true distribution is symmetric Gaussian

→ More quantities can be determined
 (volume density, gas flow) and
 compared with measured values and
 theoretical calculations

Symmetric Gaussian

Volume Density

 For different positions in the cluster beam, a volume density (blue) can be calculated from size distributions

TARGET

LASER

- Expected volume density (orange) is higher than calculated → Also smaller clusters have an influence on volume density
- Structure in cluster beam \rightarrow Core beams

Cluster size determination using shadowgraphy measurements

Outlook

- It is very likely that there are also smaller clusters, but they cannot be found with pure shadowgraphy method (at the mentioned conditions)
- Methods to find the distribution of smaller clusters will be tested in the future (3-WEM measurements)

Cluster size determination using shadowgraphy measurements

Summary

- Shadowgraphy measurements were performed at the ARCTURUS laser in Düsseldorf to estimate the cluster size distribution of a Münster Cluster-Jet target
- A routine was developed to find, select and analyze the clusters, which can be seen as dark spots on the shadowgraphy images
- Preliminary cluster size distribution was calculated, and the information of the toner measurements is used to find out the ,real' distribution

Thanks a lot for your attention!