

The MAGIX Jet Target a windowless target for high precision experiments at an energy recovery linac

Philipp Brand, Sophia Vestrick, and Alfons Khoukaz

Institute for Nuclear Physics, WWU Münster

30th conference of the International Nuclear Target Development Society (INTDS 2022), September 25 – 30, 2022

living.knowledge

Horizon 2020 European Union Funding for Research & Innovation

MAGIX@MESA

- Mainz energy-recovering superconducting accelerator (MESA) is under construction
- For MAGIX:
 - Up to 105 MeV electrons
 - Energy recovery in cryomodules (reinjection with 180° phase shift) allows high intensity of 1mA

MAGIX@MESA

- MAGIX:
 - Interaction of electron beam with windowless jet target
 - 2 magnetic focal-plane spectrometers, rotatable around the interaction point
 - Additional detectors possible like recoil detector, zero-degree detector, ...

MAGIX Physics Program

5

WWU

\ÜNSTER

- Nuclear astrophysics: Astrophysical S-factor for ${}^{12}C(\alpha,\gamma){}^{16}O$ in inverse kinematics
- Electric and magnetic proton form factor, proton radius puzzle

MAGIX Physics Program

- Nuclear astrophysics: astrophysical S-factor for ${}^{12}C(\alpha,\gamma){}^{16}O$ in inverse kinematics
- Electric and magnetic proton form factor, proton radius puzzle
- Light dark matter search: dark photon via visible and invisible decay e

MAGIX Jet Target

- Main target for MAGIX, built in Münster
- Designed for H₂ gas flows up to 2400 l/h at 40 K
 → Target thickness of more than 10¹⁸ atoms/cm²
- Operation with various other fluids like, e.g., He, N₂, O₂, Ar, Xe, ...
- Booster stage can be filled with liquid nitrogen for pre-cooling
- Two-stage cold head to reach final temperature
- Separate insulation vacuum chamber around cold head

MAGIX Jet Target

- Gas leaves target through convergent-divergent nozzle
 - Expansion leads to supersonic jet
- Operation close to the vapor pressure curve (or even in the liquid regime) can lead to cluster formation
 - \rightarrow Smaller jet divergence, higher density

- The existing MAMI facility in Mainz is used for first tests and measurements
- MAMI consists of 4 microtrons and several experiments
- Electron energies up to 1.6 GeV, beam current up to 100 μA
- The A4 hall will be used for MESA

The MAGIX Jet Target

- Three focal plane spectrometers (A, B, C)
- High frequency dipole (wobbler) to deflect electron beam
 - Perfectly suited to scan over target
- Most precise ep-scattering form factor measurements were performed here with liquid H₂ cell target (Bernauer et al.)
- Perfect setup to test MAGIX target and perform first measurements

The MAGIX Jet Target

- Interaction about 5 mm behind nozzle
- Gas jet is pumped away through conical catcher
- Already installed at A1@MAMI:
 - For precise alignment, an Al_2O_3 screen is used for beam visualization
 - To reduce a beam halo that scatters at nozzle or catcher a collimator in the beam line is installed

Beam profile scans

- Wobbler scan, analysis of ep-scattering
- Correction of wobbler distribution (longer time in the edges)
- Background suppression via missing mass
- Vertex-dependent luminosity (thickness) determination with fit to known cross section
- Fit function is convolution of two gaussians (target and known electron beam profile)

Beam profile scans

- Measurement was repeated in different distances
- Jet diverges strongly
 - Half-opening angle of the jet: ~17°
 - Half-opening angle of the nozzle: ~1.4°
- Small jet is preferred for:
 - Higher target thickness
 - Better catcher efficiency

Nozzle Optimization

- Nozzle geometry is crucial for gas expansion and formation of jet
- Gas reaches speed of sound at narrowest point between convergent inlet and divergent outlet
- Expansion in divergent outlet causes:
 - Acceleration to supersonic velocities
 - Rapid decrease in temperature
- Operation close to vapor pressure can lead to cluster formation

Nozzle Optimization – CFD simulation

- CFD = computational fluid dynamics \rightarrow solving Navier-Stokes equations with FVM/FEM
- For cryogenic jet a real gas model is necessary (Peng-Robinson gas)
- Simulations performed with OpenFOAM (solver rhoCentralFoam), open-source software
- Includes temperature dependent thermal conductance, viscosity and heat capacity
- Heat capacity also pressure dependent due to real gas model
- Different nozzle designs (linear and cup shape)
- Different diameters (narrowest and outlet)

The MAGIX Jet Target

P. Brand, INTDS2022, Villigen, September 25 – 30, 2022

Nozzle Optimization – CFD simulation

Nozzle Optimization – simulation vs. measurement

• Simulations in agreement with measured target profiles

Nozzle Optimization – simulation vs. measurement

- Simulations in agreement with measured target profiles
- New nozzle was produced in our institute via a galvanization process
- Measurements at MAMI:
 - Divergence reduced by more than a factor of 2
 - Better vacuum conditions (although less pumping speed)

21

P. Brand, INTDS2022, Villigen, September 25 – 30, 2022

Jet Target vs. Cell Target

- No background from scattering on cell walls (second peak)
- No multi-scattering at cell walls results in better resolution
- Electron beam halo can scatter at nozzle and catcher due to the small distances \rightarrow reduced by collimator
 - Strong beam halo due to a broken power supply, much less background in a following beam time

Schlimme et al., Nucl. Instrum. Meth.

The MAGIX Jet Target

Target Operation with other Gases

- Target operation with various gases planned
- Heavier gases require larger nozzle diameter for same flow or operation in the liquid regime
- First test with Argon (120 µm nozzle)
 - Liquid jet (~5 bar, ~100 K)
 - Nearly no jet divergence visible
- Stable operation over some days
- Nearly background-free data

Summary

- MAGIX jet target fulfills all requirements for an internal target at an energy recovering linac
 - Thickness of more than 10¹⁸ atoms/cm²
 - Windowless, no background from target cells, better energy resolution
- Stable operation with various gases proven (hydrogen, argon)
- Optimization of the nozzle design via simulation is confirmed by profile measurements
 - Jet divergence reduced by more than a factor of 2
- Results of first operation are published (S. Schlimme, S. Aulenbacher, P. Brand, M. Littich Y. Wang et al., Nucl. Instrum. Meth. A 1013, 165668 (Oct. 2021))

Thank you for your attention!

living.knowledge

