

The Münster Cluster-Jet Target for the Future PANDA Experiment

INTDS 2022 – 26th September **S. Vestrick**, P. Brand, D. Bonaventura, H. Eick, C. Mannweiler and A. Khoukaz (WWU Münster, Germany)

Outline

- What is the PANDA Experiment at FAIR?
- Which special requirements must the PANDA target fulfill?
- The Münster Cluster-Jet Target as internal target at PANDA
- Current development plans

- Fundamental questions of the QCD will be investigated [1,2], e.g.:
 - Theory of strong interaction
 - Hadron physics
- Facility for Antiproton and Ion Research (FAIR, under construction) will produce and accumulate antiprotons
- Antiprotons are injected into the High Energy Storage Ring (HESR)

MCT for PANDA

- Beam momentum of up to 15 GeV/c
- Interaction with internal proton target (other target fluids at later expansion stages)
- Cycle length of approx. 30 min
- Luminosities between $2 \cdot 10^{31}$ and $2 \cdot 10^{32}$ cm⁻²s⁻¹
- Relative momentum spread ranging from

$$\frac{\Delta p}{p} = 4 \cdot 10^{-5} \text{ to } 4 \cdot 10^{-4}$$

- 4π detector
- Onion shell structure
- → Luminosity, momentum resolution and detector setup lead to several challenging requirements on the internal target

MCT for PANDA

Some of the requirements for the PANDA internal target

- Target thickness in the order of 10¹⁵ atoms/cm² [4] in an adjustable manner
- Target source and its beam dump for excess target material each with minimal distance to IP of \approx 2.5 m, only connected by a narrow target pipe down to 2cm in diameter
- Dilute and localized accumulation of matter needs to be placed in ultra-high vacuum of a storage ring
- Clean environment (i.e. no windows or multicomponent systems)
- Low background reaction rates lead to necessity of differential pumping system
- No time structures in the event rate
- Small interaction zone
- → Cluster-Jet Target and Pellet Target are foreseen, depending on experimental program

First test with a prototype target in Münster

- Proof of principle
- Exceeded the desired target thickness with 4.5 · 10¹⁵ atoms/cm² in a distance of > 2 m from the source [3]
- Further optimizations can be tested easily

Münster Cluster-Jet Target for PANDA

- A source generates small droplets of hydrogen or "clusters"
- Due to 4π detector, clusters need to travel $\approx 2.25 \ \mathrm{m}$ from nozzle to interaction point
- At IP clusters interact with antiproton beam
- Clusters which did not interact, need to be dumped in differentially pumped beam dump

Hydrogen gas is cooled by a two stage cold head

• Temperature: 20 - 40 K

• Pressure: 5 - 20 bar

Then fed through a nozzle

- Convergent-divergent shape with narrowest diameter of only $\approx 30 \mu m$ and a total length of 1.8cm (i.e., $l = 600 \cdot d$)
- Specially shaped Laval nozzle with challenging, multi-step production process (completely inhouse)

Figure from: Vestrick et al., "Crossing the Widom line: Cluster formation as sensitive probe of supercritical Fluids", doi.org/10.1016/j.supflu.2022.105686

- Two operation modes (liquid, gaseous) resulting in two cluster production processes
- Accumulation of millions of hydrogen atoms in clusters
- Resulting in a stable cluster-jet, with additional residual gas background
- → Operating Münster Cluster-Jet Targets with liquid hydrogen can lead to world-record target thicknesses

- Cluster-jet is separated from residual gas background by skimmer
- Second conical orifice (collimator) tailors the cluster-jet
- Collimator also defines final shape and size of cluster-jet at IP

- Transition vacuum chamber further reduces residual gas background before entering accelerator vacuum
- Nozzle tilting system and movable skimmer and collimator allow for extraction of high intense cluster-jet region

- Not all clusters will interact with accelerator beam
- Differentially pumped beam dump after total flight path of nearly 5 m
- Adjustable orifices ensure minimal gas backflow
- Several cluster-jet diagnostic tools

 1st stage equipped with Absolute Thickness Monitor System (AMS)

 Movable rods lead to pressure increase proportional to the target thickness

- 3rd stage equipped with Multi-Channel Plate (MCP)
- Movable: in cluster-jet for analysis, out for optimal vacuum condition whilst PANDA measurements

- Several measurements possible:
 - Visualization of vertex zone

Figure from: Khoukaz et al., "Two-dimensional visualization of cluster beams by microchannel plates", doi.org/10.1016/j.nima.2013.08.085

- Several measurements possible:
 - Visualization of total cluster-jet (with e-gun)

- Several measurements possible:
 - Time-of-Flight setup (with pulsed e-gun)

- Resulting information:
 - From TOF: Cluster velocity distribution
 - From cluster-jet visualization, after calibration and with velocity: cluster-jet thickness
 - From vertex zone visualization, after calibration: Luminosity monitor

Münster Cluster-Jet Target in short

- Liquified, pressurized hydrogen is fed through specially designed and manufactured Laval nozzle
- Resulting high-intense cluster-jet is extracted and shaped by movable skimmer and collimator
- Cluster-Jet is guided over 5m through a down to 2cm narrow target beam pipe until it is dumped
- At IP (2.25m distance to nozzle) a target with thickness of $O(10^{15} a toms/cm^2)$ is placed in a vacuum of $O(10^{-8} mbar)$, with adjustable thickness over several orders of magnitude
- Several self-developed tools allow for determination of: cluster-jet position, cluster velocity, target thickness, target density, beam-target-interaction region, luminosity, ...
- Windowless target without time structures
- Modifiable target material

Current developments

- MCT currently installed at Cooler Synchrotron COSY (proton storage ring) for test measurements
 - Investigation of target-beam interaction (with proton beam)
 - Physical data on pion-production
 - Accelerator beam lifetime studies in presence of a cluster-jet target
 - Vacuum studies with an accelerator beam present
- Monitor systems and parts (e-gun, MCP, ...) under investigation at Münster laboratories
- Fully in-house nozzle production in optimization process
- Other non nuclear physics related measurements (e.g., fluid dynamics as in [5] on the Widom line)

Literature

- [1] PANDA Collaboration et al, Strong Interaction Studies with Antiprotons, arXiv: 0903.3905 (2009).
- [2] G. Barucca et al., "PANDA Phase One", European Physics Journal A57, 44, arXiv: 2101.11877 (2021).
- [3] S. Grieser, Doctoral thesis, WWU Münster (2018).
- [4] PANDA Collaboration, Technical Design Report for the PANDA Internal Targets: The Cluster-Jet Target and Developments for the Pellet Target. Technical report. FAIR. (2012).
- [5] Vestrick et al., "Crossing the Widom line: Cluster formation as sensitive probe of supercritical Fluids", DOI: 2022.105686 (2022).
- [6] Khoukaz et al., "Two-dimensional visualization of cluster beams by microchannel plates", DOI: 2013.08.085 (2013).

Work supported by BMBF, GSI F&E and HORIZON2020