

HIGH ENERGY VIBRATIONAL POWDER PLATING (HIVIPP)

Nuclear Inst. and Methods in Physics Research, A 981 (2020) 164371

CONNOR MOHS

Center for Accelerator Target Science Physics Division

HISTORY

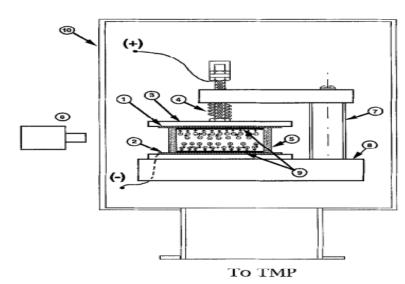


Fig. 1. Schematic drawing of experimental set up; 1: backing foil (upper electrode: anode), 2: backing foil (lower electrode: cathode), 3: press plate, 4: spring for the press plate, 5: glass pipe, 6: He–Ne laser, 7: strut, 8: Teflon holder, 9: deposited layer, 10: glass vacuum chamber.

. Sugai J Nucl. Instr. and Meth. in Phys. Rex A 397 (1997) 81-90

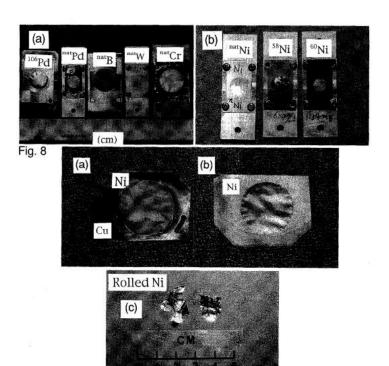
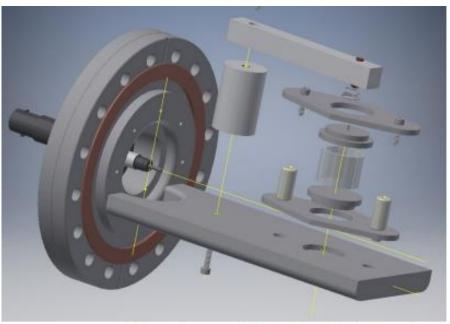


Fig. 9

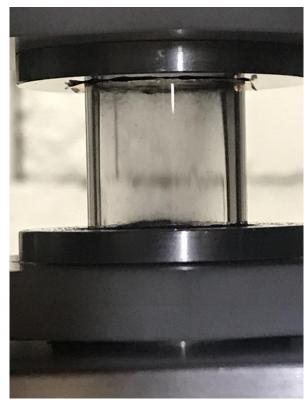
Fig. 8. Pictures of self-supporting targets prepared by the present method; (from left to right) (a) ¹⁰⁶Pd(15 mm Ø), ^{sor}Pd (10 mm Ø), ^{sor}Pd

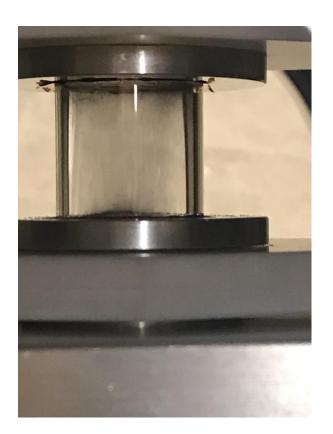
Fig. 9. Photographs of the self-supporting foil of ⁵⁸Ni. Its thickness is 0.83 mg/cm². It was prepared under the conditions of 15 kV, ⁷⁰ µA for 5 h and from 25 mg starting weight: (a) rear surface after dissolving the Cu backing, (b) front surface, (c) rear surface after rolling.

OBJECTIVES


- Efficiency
- Modularity
- Radioactive capability
- Cleanliness

DESIGN

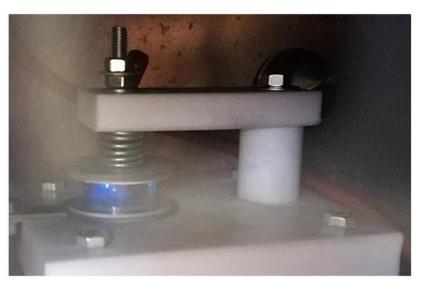




Designed by Ravi Gampa

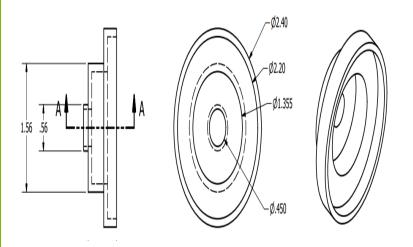
DEPOSITION

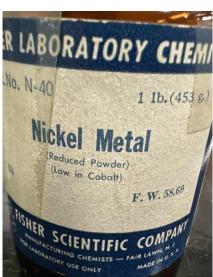
TARGETS



Top Bottom

ARCING


Cisternino, S.; Skliarova, H.; Antonini, P.; Esposito, J.; Mou, L.; Pranovi, L.; Pupillo, G.; Sciacca, G. Upgrade of the HIVIPP Deposition Apparatus for Nuclear Physics Thin Targets Manufacturing. *Instruments* **2022**, *6*, 23. https://doi.org/10.3390/instruments6030023


FUTURE

Design Improvements

Testing More Material

REFERENCES

- Cisternino, S.; Skliarova, H.; Antonini, P.; Esposito, J.; Mou, L.; Pranovi, L.; Pupillo, G.;
 Sciacca, G. Upgrade of the HIVIPP Deposition Apparatus for Nuclear Physics Thin Targets
 Manufacturing. *Instruments* 2022, 6, 23. https://doi.org/10.3390/instruments6030023
- Hanna Skliarova, Sara Cisternino, Lorenzo Pranovi, Liliana Mou, Gaia Pupillo, Valentino Rigato, Carlos Rossi Alvarez, HIVIPP deposition and characterization of isotopically enriched 48Ti targets for nuclear cross-section measurements, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,* Volume 981, 2020,164371, ISSN 0168-9002, https://doi.org/10.1016/j.nima.2020.164371.
- Isao Sugai, An application of a new type deposition method to nuclear target preparation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 397, Issue 1,1997, Pages 81-90, ISSN 0168-9002, https://doi.org/10.1016/S0168-9002(97)00733-X.

Acknowledgements

- Ravi Gampa
- Matt Gott
- John Greene
- Claus Muller-Gatermann

THIS WORK IS SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, NUCLEAR PHYSICS DIVISION, CONTRACT NO. DE-AC02-06CH11357

