

Production of powder targets for neutron-induced cross section measurements

A. Moens, P. Amador Celdran, H. Hein, G. Sibbens^{*}, D. Vanleeuw, S. Van Winckel, EC Joint Research Centre

INTDS2022 Villigen, 27-09-2022

This presentation

- Introduction
- Press equipment and method
- Press parameters and material
- Characterization
- ➢ Results
- Summary

Introduction

The JRC is the largest provider of neutron data in the European Union. The data result from measurements at its two large-scale particle accelerators, and is used for nuclear safety and security in nuclear energy and for nuclear science applications.

Targets for neutron cross-section measurements

Thin layers on thin substrates

- by molecular plating (U, Pu, Np, Am in nuclear controlled area)
- > by physical vapour deposition $(^{235}U \text{ and } ^{238}U \text{ in nuclear controlled area};$

⁶LiF, ¹⁰B, C₅₇H₁₁₀O₆, metallic Li deposits outside nuclear controlled area)

Samples with a wide range of thicknesses

- > by rolling and punching metal discs (in- and outside nuclear controlled area)
- by pressing powders (in- and outside nuclear controlled area)
- > by dissolving and diluting solutions (in- and outside nuclear controlled area)

This presentation

Preparation of

- ⁹⁴Mo, ⁹⁵Mo, ⁹⁶Mo targets for capture and transmission measurements to determine the neutron-induced cross-sections of ⁹⁶Mo
- > ²³⁹Pu target to measure ²³⁹Pu(n,xn γ) cross sections
- Mass: 2 g
- Thickness: maximum 1 mm
- Mechanical stable
- Good strength
- Self-supporting

This presentation

Available material: ⁹⁴Mo, ⁹⁵Mo, ⁹⁶Mo and ²³⁹Pu only as a powder

Preparation method: uniaxial pressing

To avoid addition of impurities and enable simple recovery of limited and valuable material

no adding fluids (e.g. solvent)

> no additives (e.g. binder)

➢ no lubricants

➢ no sintering

Press equipment

Ejector ring

Press tool, made of hardened steel and the corresponding lower and upper die.

145/101

Press equipment

- Hydraulic lab press
- External manual hand pump
- Press load display

Specac press 15-t pressure load

Retsch press 25-t pressure load

P/O/Weber manual press, Model PW 30-BOX, enclosed in a glove box

Uniaxial pressing

- 1. Die filling
- 2. Compaction
- 3. Ejection

André Moens turning the spindle down of the P/O/Weber manual 2-Column Laboratory Press, Model PW 30-BOX in a glove box and outside the glove box pumping the oil to raise the piston and reaching the designated press force shown on the gauge.

Uniaxial pressing

Release of the pellet with the ejector ring on top of the upside-down press tool.

Simulation tests for Mo

Molybdenum

- Molybdenum pellet
 - Mass 2 g
 - Thickness as low as possible (max 1 mm)
 - Mechanical stable, good strength

Die diameter	Pressure Force	Powder	Powder mass	Pellet mass	Pellet thickness	Effective density	Strength
mm	kN		g	g	mm	%TD	
30	350-380	^{nat} Mo (<5 µm)	2.00		0.6		not good
30	300-390	^{nat} Mo (350 µm)	2.00		0.5		not good
20	160	^{nat} Mo (<5 µm)	2.02	2.00	0.9	70	good
20	160	^{nat} Mo (350 µm)	1.99	1.99	0.9	69	good

goedele.sibbens@ec.europa.eu

European Commission

⁹⁴Mo, ⁹⁵Mo, ⁹⁶Mo pellets

Die diameter	Pressure Force	Powder	Powder mass	Pellet mass	Pellet thickness	Effective density	Strength
mm	kN		g	g	mm	%TD	
20	160	⁹⁴ Mo	1.95	1.95	1.0	59	good
20	160	⁹⁵ Mo	1.98	1.98	1.1	54	good
20	160	⁹⁶ Mo	1.92	1.92	1.1	56	good

2 g ⁹⁵Mo Diameter 20 mm Thickness 1.1 mm

Simulation tests for ²³⁹PuO₂

- Pellet
 - Mass 2 g
 - Thickness as low as possible (max 1 mm)
 - Mechanical stable, good strength

2 g UO₂ Diameter 30 mm Thickness 0.7 mm

Die diameter	Pressure Force	Powder	Powder mass	Pellet mass	Pellet thickness	Effective density	Strength
mm	kN		g	g	mm	%TD	
30	200	^{nat} UO ₂	2.07		0.7		not good
12	60	CeO ₂	0.46	0.46	1.0	55	good
12	60	CeO ₂	0.55	0.55	1.1	59	good
12	53-60	^{nat} UO ₂	0.66	0.65	1.1	46	good
12	62	^{nat} UO ₂	0.54	0.54	0.9	48	good
12	62.5	^{nat} UO ₂	0.47	0.47	0.8	47	good
12	62.5	natUO ₂	0.41	0.41	0.7	46	good

European Commission

²³⁹PuO₂ material

²³⁹PuO₂ Batch 716 99.97% ²³⁹Pu

²³⁹PuO₂ Batch 1756 99.90% ²³⁹Pu

²³⁹PuO₂ Purified Batch 1756(p) 99.90% ²³⁹Pu

- ➢ ²³⁹PuO₂ Batch 716 (ORNL batch n° Pu-239-277A) (purchased in 1979, history unknown)
- > ²³⁹PuO₂ Batch 1756 (ORNL batch nº Pu-239-277BR) (purchased in 1989, history unknown)
- ²³⁹PuO₂ Batch 1756(p) is Batch 1756 after purification for americium at SCK CEN in Belgium in 2021 by peroxide precipitation, re-dissolution of the plutonium peroxide in nitric acid, oxalate precipitation and calcination at 735 °C

²³⁹PuO₂ pellets: Pu batch 716

Die diameter	Pressure Force	Powder	Powder mass	Pellet mass	Pellet thickness	Effective density	Strength
mm	kN		g	g	mm	%TD	
12	60	²³⁹ PuO ₂ no 716	0.50	0.50	0.75	48	good (only the 1 st)

²³⁹PuO₂ batch 716 99.97% ²³⁹Pu

1st pellet

Press tools before and after

²³⁹PuO₂ pellets: Pu batch 1756

Die diameter	Pressure Force	Powder	Powder mass	Pellet mass	Pellet thickness	Effective density	Strength
mm	kN		g	g	mm	%TD	
12	60	²³⁹ PuO ₂ no 1756	0.50	0.50	0.8	48	good

²³⁹PuO₂ batch 1756 99.90% ²³⁹Pu

²³⁹PuO₂ pellets: Pu batch 1756(p)

Die diameter	Pressure Force	Powder	Powder mass	Pellet mass	Pellet thickness	Effective density	Strength
mm	kN		g	g	mm	%TD	
12	60	²³⁹ PuO ₂ no 1756p	0.50	0.50	0.8	48	good (only the 1 st)

²³⁹PuO₂ batch 1756(p) purified for Am

1st pellet

2nd pellet

goedele.sibbens@ec.europa.eu

Purification done at SCK CEN in Belgium in 2021 by peroxide precipitation, re-dissolution of the plutonium peroxide in nitric acid, oxalate precipitation and calcination at 735 °C

²³⁹PuO₂ pellets: summary

Die diameter	Pressure Force	Powder	Powder mass	Pellet mass	Pellet thickness	Effective density	Strength
mm	kN		g	g	mm	%TD	
12	60	²³⁹ PuO ₂ no 716	0.50	0.50	0.75	48	good (only the 1 st)
12	60	²³⁹ PuO ₂ no 1756	0.50	0.50	0.8	48	good
12	60	²³⁹ PuO ₂ no 1756p	0.50	0.50	0.8	48	good (only the 1 st)

The bad plutonium pellets produced from the first batch n° 716, the heterogeneity of the colour and the corrosion of the press tools generated some questions related to the presence of impurities in the material.

Characterization of Pu batch 716

ICP-MS

V	U	Се	Np	Th	Та
	há	g/g soli	d materia	al	
12400	3340	20	15	9	5
Isot	оре	pp	om	W	t%
U-2	233	22	2200		7
U-235		11	1100		2
U-238		41		1.2	
U-236		1	1.1		.05
U-2	234	0	.4	< 0.05	

SEM-EDX

position	12	13	14	15
	Wt%	Wt%	Wt%	Wt%
С	2.93	4.06	13.36	6.00
0	14.37	13.77	10.58	12.66
Si	1.49	0.65	0.58	1.06
CI	2.04	1.69	1.10	1.68
Са	1.48	1.82	1.34	1.54
Fe	0.55	0.23	0.44	0.33
U	2.92	2.81	1.95	2.28
Pu	74.23	74.96	70.65	74.46

Position	1-2-3-4-5- 6-7	8-9	12-13-14- 15
Shape	Pellet	Particules	Powder
С	х	х	х
0	х	х	х
Si	х	х	х
CI		х	х
Са		х	х
Fe/Ti			х
V		х	
U	х	х	х
Pu	Х	Х	Х

Characterization of Pu batch 716

XRD analysis

Inset: peak fitting with PuO_2 and $Np_3F_{12}H_20$ phases

Characterization of Pu batch 716

DTA-GTA in O_2 and Ar

Important weight loss of 11 wt% as a result of the DTA-GTA in O₂ and Ar

Summary

Pressure force and diameter were chosen to produce mechanical stable green pellets with a mass of 2 g and a thickness as thin as possible and maximum 1 mm by uniaxial pressing the powder with a hydraulic press without using fluids, binders, lubricants to avoid addition of impurities and enable simple recovery of limited and valuable material.

Summary

Die diameter	Pressure Force	Powder	Powder mass	Pellet mass	Pellet thickness	Effective density	Strength
mm	kN		g	g	mm	%TD	
20	160	⁹⁴ Mo	1.95	1.95	1.0	59	good
20	160	⁹⁵ Mo	1.98	1.98	1.1	54	good
20	160	⁹⁶ Mo	1.92	1.92	1.1	56	good
12	60	²³⁹ PuO ₂ no 716	0.50	0.50	0.75	48	good (only the 1 st)
12	60	²³⁹ PuO ₂ no 1756	0.50	0.50	0.8	48	good
12	60	²³⁹ PuO ₂ no 1756p	0.50	0.50	0.8	48	good (only the 1 st)

²³⁹PuO₂ pellets: summary

Batch 716

Analysed for impurities: C, CO_2 and Cl

Batch 1756

Purified 1756 (p)

Summary

- The analyses of the PuO₂ powder of batch 716 by ICP-MS, SEM-EDX, XRD and DTA-GTA showed beside the expected Pu, O and actinide elements from the radioactive decay of Pu, the important presence of V, C, and Cl. Carbon could be linked to the purification process of plutonium dioxide via thermal decomposition of hydrated plutonium(IV) oxalate.
- We can only assume that the presence of C, CO2, and Cl in the purified Pu material, in combination with water absorbed from the environment, caused corrosion of the steel press tools. This could result in end-capping by friction of the Pu material with the inner wall of the die sleeve and/or that volatile impurities caused high porosity and cracks in the Pu pellet.

Summary

- Powder contamination, crystalline order and morphology of grains can influence the pressing process.
- ➤ This depend on
 - > powder production process
 - storage container
 - ➤ purification process
 - ➢ process environment, etc.

which is not always known!

My thanks go to

A. Moens, P. Amador Celdran, H. Hein, D. Vanleeuw, S. Van Winckel, E. Dahms and M.
Ernstberger (EC-JRC) for the pellet preparation and characterization
O. Walter and R. Eloirdi (EC-JRC Karlsruhe) and M. Verwerft (SCK CEN, Belgium) for their collaboration and fruitful discussion

Goedele Sibbens EC-JRC Geel, Belgium goedele.sibbens@ec.europa.eu

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

