
Electrodeposition of iridium for target manufacturing

Ntombizonke Kheswa NRF-iThemba LABS, South Africa

30th Conference of the International Nuclear Target Development Society (INTDS) 2022 25 – 30 September 2022, Paul Scherrer Institut, Switzerland

Advancing knowledge. Transforming lives. Inspiring a nation.

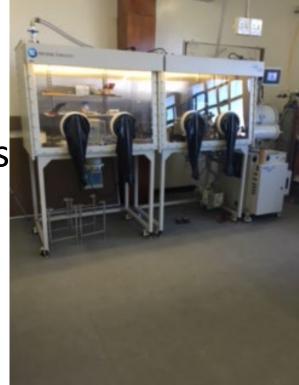
OUTLINE

- Introduction: Application of targets, target laboratory and motive to produce Ir target.
- Experimental trials: Dissolution methods for Ir,
 Electrodeposition set-up and deposition trials.
- Results and challenges.
- Future plans

INTRODUCTION

Facilities where targets are used
 AFRodite – y array detector
 K600 spectrometer
 Neutron vault
 Tandetron and Tandem-AMS facilities



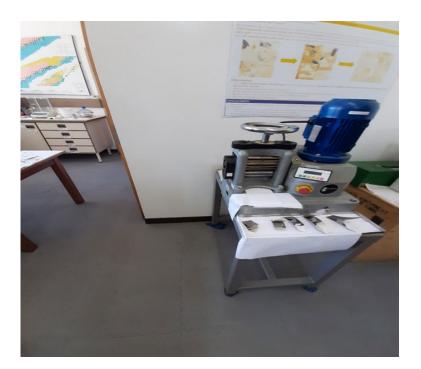

Azaiez, et al (2020), iThemba LABS, Nuclear Physics News, 30:4
<u>https://tlabs.ac.za/</u>

Target laboratory

Glove Box

Supplier: Innovative technology

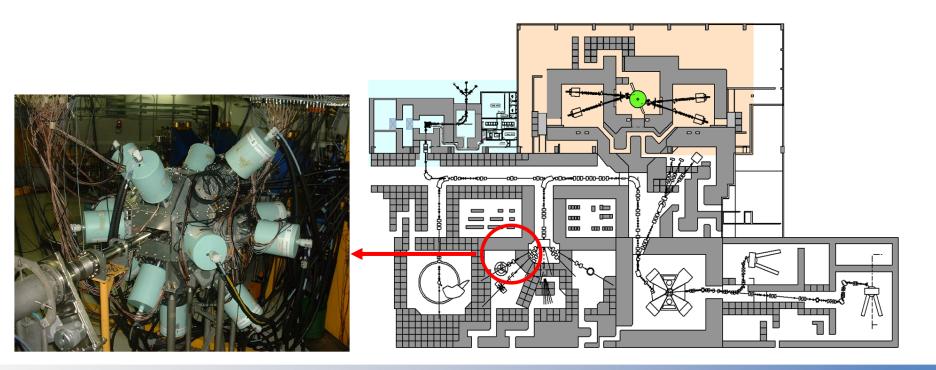
- Gas purifier and 2 antechambers
- O₂ < 1 ppm
- Moisture < 1 ppm
- Working gases: N_2 or Ar
- Housed: rolling mill and weighing balance



Target laboratory

Vacuum_evaporators

Rolling mill



Advancing knowledge. Transforming lives. Inspiring a nation.

THE EXPERIMENT

- Irradiate a self-supported ¹⁹³Ir target with an α beam of 48 MeV in the F-line chamber and collect prompt gamma-rays in ¹⁹³Au with the upgraded AFRODITE array;
 ¹⁹³Ir(α,4n)¹⁹³Au reaction
- A self-supported 193 Ir target with thickness of 2mg/cm² sufficient to stop the 193 Au recoils (A stack of 100 μ g/cm²).

Experimental

Aqueous Electrolyte- metal should dissolve in a solvent Dissolution of Ir to IrCl₂

- Iridium is the second hardest, not ductile element of the PGMs [Green, *et.al.*, 2020; Leddicotte, 1961].
- It is the most corrosion resistant element- not attacked by most of the acids (aqua-regia, molten metals, etc.) [MacDaniel, et.al., 1971; Leddicotte, 1961].

Experimental: conversion to Iridium complexes which will dissolve in acids to form an electrolyte.

Experimental

Three types of electrolyte: Iridium chloride, sulfamic acid and Iridium bromide ([Platinum metals rev, 1966].

- Iridium Chloride was a pre-requisite compound for all three electrolytes.
- Preparation: Mixed Iridium powder with HCl (32 %) and refluxed. The process was slowly to reach the green colour.
- Electroplating was performed using Iridium chloride as the electrolyte.

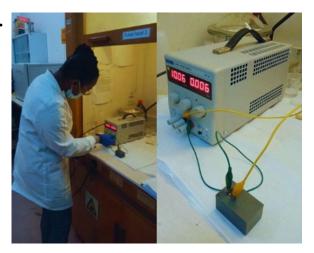
Sulfamic acid electrolyte

Due to unavailability of H_3NSO_3 in our lab, it was prepared inhouse by mixing oleum with urea (this was done during lockdown restrictions). Resulted acid was then diluted to 1 M concentration and mixed with iridium chloride.

Electroplating set-up

DC Power supply: 25 V

Cell : 5 cm^3


Conditions

Cathode: Cu (0.15 mm)

Anode : Pt (0.15 mm)

Current Densities: 500 mA

We couldn't be precise, Cu was attacked by electrolyte.

Iridium Chloride and Sulfamic Electrolyte Comparison

Iridium Chloride

- Black deposit noticed on Cu, no deposits of Ir.
- Cu attacked by electrolyte
- Recommendation
- AC auxiliary electrode

Sulfamic Electrolyte

- Silvery white thin broken Ir pieces were noticed on a Cu substrate.
- Cu attacked by electrolyte, had to stop the depositions
- Electrode clamps also got damaged as well

Complete Dissolution of Ir Methods

- Ir was not dissolving complete in HCl
- Digestion under vacuum using HCl and H_2O_2 solvents (No facility nearby).
- Alkali fusion with KOH and KNO₃

<u>Microwave digestion</u> – University of Stellenbosch

- Partially digested (solvents HNO₃ and HCl)
- Reducing metal was added- NaOH pellets
- Solution was further refluxed for days trying to improve the dissolution of Ir.
- Electroplating continued using Sulfamic electrolyte

Electroplating design modification

Results and challenges

Advancing knowledge. Transforming lives. Inspiring a nation.

Future Plans

- Investigate the reason on why Cu substrate is attacked by the electrolyte.
- Increase microwave digestion duration
- Use bromide electrolyte- awaiting for chemicals
- Make improvements on the setup- smaller volume cells to minimise waste.

NGIYABONGA

you

