PREPARATION AND CHARACTERIZATION OF HOPG-BACKED TARGETS FOR THE NUMEN PROJECT

INTDS 22 – 25-30 September 22, Switzerland

PRESENTATION LAYOUT

Overview of the LNS target laboratory

The new target measurement system and its characterization

Mo target production

Cd target production

Conclusions

Bell Jar Thermal evaporator system - L300

• • • • • • • • • • • •

- Two resistive sources
- A probe to monitor the backing temperature
- A quartz crystal micro balances

Vacuum thermal Evaporator - LEYBOLD HERAEUS 560

Evaporation by

- e-beam heating source
- resistive heating source

- quartz crystal micro balance
- halogen heating elements to fix temperature

STANDARD TARGET FRAMES @ LNS

В

It is possible to manufacture target also on different frames !

New system for target thickness measurement and characterization

.......

Based on alpha transmission measurements
A cylindrical chamber of about 1 m
4 plates to host different type of target frame

Handling system

Pinpoint scanning sensor

.......

- A moving arm splitted in two part hostes an ²⁴¹Am alpha source and a Si detector
- Designed to scan all target surface with a precision of 1 mm thanks to a rotational system and a video camera
- The user can set how many and which points scan

High precision target uniformity study

Calibration of the Si detector

• 2 alpha sources used to perform the detector calibration in the range of interest

Mo and Cd TARGETS FOR THE NUMEN PROJECT @LNS

The NUMEN Target must have:

- thin (200-500 μ g/cm²) and uniform;
- deposited on Highly Oriented Pyrolytic Graphite (450 μ g/cm² 2 μ m with ρ = 2.253 g/cm²)

Why HOPG ?

The high thermal conductivity is the main feature of HOPG, so it is able to dissipate the heat produced by the intense (up to 10^{13} pps) ¹⁸O or ²⁰Ne ion beam on the target.

Mo and Cd studies were performed by natural elements, to avoid the wasting of isotopes materials

Molybdenum (250 $\mu g/cm^2)$ on HOPG (450 $\mu g/cm^2)$

@ LEYBOLD HERAEUS 560 (e-beam)

- 1 g Mo powder deposited on pellet of $\Phi = 10$ mm.
- Distance source backing = 200 mm
- Evaporation rate = 0.3 0.4 Å/s
- 600 mg of Mo used
- Thickness @ the quartz : 240 μ g/cm²

FESEM @ Politecnico di Torino

- Thicknesses obtained by the alpha measurement close to one measured by the quartz, but a strong local non uniformity could be deduced by the energy residual spectra
- A very rough surface of the Mo it could be expected !!
- The Mo surface was analysed by colleagues of Politecnico di Torino by using a Fesem measurement

Molybdenum (250 $\mu\text{g}/\text{cm}^2)$ on HOPG (450 $\mu\text{g}/\text{cm}^2)$

@ LEYBOLD HERAEUS 560 (e-beam)

- 1 g Mo powder deposited on pellet of Φ = 10 mm.
- Distance source backing = 200 mm
- Evaporation rate = 0.3 0.4 Å/s
- 600 mg of Mo used

-)@)

- Thickness @ the quartz : 240 μ g/cm²
 - Backing heated at 300°C

- The Mo seems quite uniform.
- New analysis will be performed to confirm this result.

Cadmium (500 $\mu g/cm^2)$ on HOPG (450 $\mu g/cm^2$)

@ L300

- 1.5 2 g Cd deposited on Mo boat.
- Distance source backing = 250 mm
- Evaporation rate = 0.2 Å/s
- 1 g of Cd used
- Thickness @ the quartz : 500 μ g/cm²
- To promote adhesion of Cd on the backing a 100 Å of Bi is deposited on HOPG substrate before Cd evaporation
- A good working condition is to evaporate Cd on a cooled backing.
- In our lab we do not have a cooling system for backing
- To overcome this limit, the evaporation process was performed in 2 steps: first half of the required thickness is evaporated, the substrate is expected to reach room temperature, evaporates until the required thickness is reached

PRELIMINARY

Cadmium (500 $\mu g/cm^2)$ on HOPG (450 $\mu g/cm^2$) Results

PRELIMINARY

	Backing	Average Cd thickness
1 step evaporation	HOPG (450 μ g/cm ²)	170 μg/cm² 🕑 🕑
	C (70 μg/cm ²)	300 μg/cm ² 🕑
- 📺 - 2 steps evaporation	HOPG (450 µg/cm ²)	140 μg/cm² 🕑 ়
	C (70 μg/cm²)	473 μg/cm²💽
	HOPG (2.25 mg/cm ²)	370 μg/cm²💽

- Reported the average value of the target thickness obtained in the two step process and for comparison the result obtained by performing a one step process
- Not only the 2 μm HOPG was used as backing, but also amorphous C and 10 μm HOPG

The surface of foil plays an important role in the evaporation process

Conclusions

- Target laboratory available at INFN-LNS for users
- Development, production and characterization of evaporated foils on HOPG for the NUMEN project
- Two cases of interest for NUMEN:
 - Mo target: uniformity improved by substrate heating
 - **Cd** target: evaporation response depending on substrate properties (amorfous C or HOPG) to be further explored
- LNS target laboratory is part of **EURO-LABS** WP 2.5 «Service Improvements» Subtask «Targets»

Fostering the **connection between different nuclear physics institutions** in Europe and associated countries with the aim to create and maintain a **distributed infrastructure** for target development, production, and characterization.

