

Daniela Kiselev :: ASA/GFA :: Paul Scherrer Institut for the IMPACT collaboration

THE PSI MESON TARGET FACILITY AND ITS UPGRADE IMPACT-HIMB

INTDS 2022 - 30th World Conference of the International Nuclear Target Development Society

Accelerator Facilities at PSI

UCN

SINQ Spallation Neutron Source

SWISSFEL

5.8 GeV

p-Therapy (PROSCAN) Comet: 250MeV, <1μA

Central control room

Swiss Light Source (SLS) 2.4GeV, 400mA High Intensity Proton Accelerator (HIPA) 590 MeV, max. 2.4mA

SINQ

The PSI Proton Accelerator Facilities

HIPA (High Intensity Proton Accelerator) PROSCAN (Proton therapy): since 2007

- CW (50.63 MHz), 590 MeV,
- up to 2.4 mA(1.44 MW)
- 2 meson production targets
- 7 secondary beam lines
- SINQ and UCN spallation source

Comet: superconducting cyclotron CW, 250 MeV, up to 1 µA protons medical treatment:

3 Gantries, 1 Eye Cancer Treatment Station Irradiation Station: PIF

Target E:

Target M: πM1: 100-500 MeV/c Pions πM3: 28 MeV/c Surface Muons

- π E1: 10 500 MeV/c High Intensity Pions und Muons
- μE1: Polarized Muon Beam
- **πE3: 28MeV/c Surface polarized Muons**
- μE4: 30 100 MeV/c High Intensity Polarized Muons
- **πE5: 10 120 MeV/c High Intensity Muons**

Meson production targets: Target E and Target M

Production of muons:

• Surface muons:

produced from pion decay at rest at the *surface* of the target (d < 1 mm)

 almost monochromatic: max. at 28 MeV/c (= 3.7 MeV)

- 100% polarized

(spin in opposite direction to momentum) in reality: 90 – 95 % polarization due to pion decays in flight

World's highest intensity surface muon beams > $10^8 \mu/s$

 Low energy muons (LEM): 0.5 -30 keV moderated by a cryogenic target in one of the beamlines (μE4)

Challenges for meson production target E

• Power deposition:

at 2.4 mA, 590 MeV protons ~ 50 kW on Target E

- \rightarrow cooling
- \rightarrow high temperature resistant material
- ightarrow thermal stress ightarrow deformation

Approach:

- <u>polycrystalline graphite</u> \rightarrow isotropic properties
- <u>spokes</u>: allows thermal expansion of target cone hollow to avoid high temperature at bearing
- <u>slits</u> in wheel rim für thermal expansion
- <u>cooling by radiation:</u>
 - independent of conductivity (radiation damage!)
 - local shielding (Cu) is cooled by water
- <u>distribute power:</u> rotating wheel with 1 Hz → needs bearings

Target E

1700 K

Challenges for meson production targets

Monitoring of the motor current

Exchange of the high-activated components

Exchange flask:

- 45 t, shielded with 40 cm steel
- remotely operated
- used for > 15 components

Constraint for insert:

610mm x 480mm (inner cross section)

"Bridge":

- contains contamination protection
- door to close lifting hole
- sticks for positioning of the flask

Working platform:

- ~ ~ 2m above beamline, shielded with steel
- Accessible after removing 3 4 m of concrete

For capture-solenoid:

Much simpler exchange flask planned but with large cross section (1000mm x 800mm)

Critical components: Bearings

• Ball bearings:

No grease as lubrication! \rightarrow brittle due to hard irradiation so called radiation hard grease does not help \rightarrow proofed

in use since ~2002:

Balls Si₃N₄, GMN, Germany Coating: MoS₂, Ag for ring & cage 1 -2 x exchange/year $\leftarrow \rightarrow$ Graphite wheel lasts much longer: ~ 4Years (39 Ah record) in test this year:

Shun Makimura (JPARC)

Balls stainless steel + WS₂ blocks Koyo, Japan Test (without radiation): > 420 days <u>In beam 2021, no change!</u>

(Motor current very smooth and stable)

- very smooth and flat motor current
- no degradation visible
- exchanged in April 2022 (before run period 2022)
 - ightarrow could probably be in operation for much longer time

- Significant increase of surface muon rate due to larger surface
- 30 50 % increase in surface muon rate measured (and simulated

Slanted target type with grooves

Idea:

Monitoring of the beam position according to the modulation in current transmission. Analysis: via FFT in progress

First time in beam since May 2022 (equipped with KOYO bearings)

Target: graphite

2 mm thick rim

 \rightarrow effective 5 mm (due to angle),

cooled by thermal conduction

no problems with bearings, since well shielded!

IMPACT = HIMB & TATTOOS

Isotope and Muon Production with advanced cyclotron and target technology

R, Eichler, D. Kiselev, A. Knecht, N. van der Meulen, A. Koschik

HIMB: High-Intensity Muon Beams is part of IMPACT

Surface muons (~ 28 MeV/c) rates of 10^{10} /s for particle physics and μ SR (factor ~ 100 more than presently)

TATTOOS: Targeted Alpha Tumour Therapy and Other Oncological Solutions Producing radioisotopes with 590 MeV protons (100 μ A) for cancer treatment & diagnostics in quantities needed for clinical studies

Aim: Support by the Swiss Roadmap of Infrastructure by 60 MCHF

- Jan. 2022 Conceptional Design Report (CDR)
- July 2022 Triple-A rating in the scientific evaluation
- Dec. 2022 Evaluation of feasibility & finances \rightarrow Swiss Roadmap of Infrastructure 2023
- End 2024 Final decision → Start Installation: 2027 Budget: 77 MCHF (10 MCHF PSI , 7 MCHF Third-Part money)

CDR https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A41209

2 separators for momentum and particle selection

MuH2: particle physics

MuH3: material science

• Shielding is under calculation (MCNP simulation)

Target M Region in WEHA

Rückbaukosten: Fokus auf Targetblock

Abbau: 2027

april :

PRAID IN FRANK PROVINCES, UNIVER TRANSPORTED SATURD PROVINS AND A SUBSCRIPTION AND A S

- short wide solenoids with large fringing field in high radiation area
- close distance to the target +/- 250 mm
- thicker target (20 mm instead of 5 mm) \rightarrow higher losses & activation
- slanted target type large rim (> 100 mm)
 - large rotating wheel for cooling
 - small angle relative to beam
- beamline optimized for large transmission of surface muons & small losses of the proton beam

Target H insert

Time schedule

Strongly compressed version – low resolution figures Full resolution original available a https://www.psi.ch/en/media/71845/download

IMPACT Conceptual Design Report

> PSI Bericht Nr. 22-01 January 2022 ISSN 1019-0643

~ 100 people are involved

9 subprojects and 35 working groups

Conceptional Design Report

https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A41209

- Challenges for the muon target at 50 kW:
 - Cooling, Deformation, Bearings suffer in the high irradiation area!
- KOYO bearings from JPARC worked very well for 2021 run period
- Slanted target type increases muon surface rate by up to 50 %
- Combined groove (for centering) and slanted target is ins use for the first time.
- Conceptual study HIMB for Swiss Roadmap aims for 10¹⁰ surface-μ/s in particle physics areal

Good bearings are particularly important for HIMB to avoid doubling the downtime.

Organisation IMPACT

- Target and 2 capture solenoids in 1 vacuum chamber:
 no space for additional wall or pillow seal keeping +/- 250 mm from beamline
- all vacuum chambers are cooled by water
- exchange of solenoid in vertical direction with (new) exchange flask

Rim Temperature and Stress Distribution

Simplified geometry of V2: 1 segment, straight movement through the beam

