Design, construction, commissioning, and early operation of the third-generation n_TOF neutron spallation target at CERN

R. Esposito and M. Calviani

CERN – European Laboratory for Particle Physics

for the n_TOF third-generation spallation target project team

The n_TOF facility at CERN

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

The n_TOF facility at CERN

n_TOF: neutron Time Of Flight

- High instantaneous neutron fluence (10⁸ n/cm² in a single pulse)
- Wide energy spectrum (sub-thermal to 1 GeV)
- High energy resolution ($\Delta E/E = 10^{-4}$)

Ideal for high signal-to-background ratio neutron cross-section measurements on radioactive isotopes available only in small amounts

Design studies for the 3rd-gen target

Design studies for the 3rd-gen target

Temperature (thermal FEM)

32 kJ in 6-ns (RMS) \rightarrow Stress wave propagation

The 3rd-gen n_TOF target

Thermal behaviour

Design parameters

Pulse intensity	10 ¹³ p ⁺		
Beam momentum	20 GeV/ <i>c</i>		
Pulse energy	32 kJ		
Pulse length	25 ns (4σ)		
Beam size (Gaussian)	15 mm (1σ)		
Average intensity	1.67×10 ¹² p ⁺ /s		
Average current	0.27 μΑ		
Average power	5.4 kW		
Peak current	91.3 A		
Peak power	1.8 TW		

- Peak temperature in 2nd slice: 135°C
- Lead melting temperature: 327°C

Studies on creep effect

Lead creep \rightarrow risk of obstructing cooling channels

New User Programmable Feature coded in ANSYS For each segment on a log-log plane: $\dot{\varepsilon} = c \cdot \sigma^m$

- 2×10⁸ s simulated (6 years and 4 months of continuous operation or twice the target lifetime)
- Also useful to perform CFD simulations in degraded scenarios

(deformations amplified for better visualization)

Pb constitutive model for cyclic plasticity

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials

Ti-6Al-4V-clad lead

N₂-cooled lead slices

PIE N₂-cooled Pb prototype

Neutron tomography at NEUTRA (PSI)

No detectable voids down to 100 μm

Ti64-clad Pb prototype

Huge oscillations of stress on the beam axis and below the cylindrical surface

- After 1000 pulses of 3.6×10¹² p⁺
- Neutron tomography at ILL (Grenoble)
- Voids in the lead cylinder
- Ti-6Al-4V cladding intact and content sealed

Upstream beryllium plate cracked

3rd gen target installed in 2021

Target operation in 2021-2022

20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

Target operation in 2021-2022

$15 \times 15 \text{ mm}^2 \text{ RMS}$

16×7 mm² RMS

Dose rate (measured at 1 m) after modifications in the beam line with improved optics during the end-of-year technical stop

			Dose rate [µSv/h]	Dose rate [µSv/h]	Dose rate [µSv/h]	Dose rate [µSv/h]	Dose rate [µSv/h]
ID	Reference	Position	Date: 15-09-21	Date: 28-09-21 (8:15)	Date: 16-11-21 (14:50)	Date: 17-05-22 (13:15)	Date: 13-09-22 (17:50)
			Cool down time: 30 h	Cool down time: 30 h	Cool down time: 30 h	Cool down time: 30 h	Cool down time: 31 h
1	-	Start of FTN	3	2.5	1	0.8	4
2	QFO.435	UPSTREAM	4	2.5	2	1.7	38
3	QFO.435	DOWNSTREAM	4	3.5	2	3	46
4	DHZ.436	DOWNSTREAM	3.5	1.7	2	1.3	26
5	QDE.450	UPSTREAM	33	18	12	12	33
6	QDE.450	DOWNSTREAM	38	18.5	13	15	37
7	DVT.451	DOWNSTREAM	13	3.6	4	10	25
8	-	Between DVT.451 and FTN.BTV454		30 (below)			
9	-	Between DVT.451 and FTN.BTV454					12
10	FTN.BTV454	UPSTREAM	97	32	20	15	20
11	FTN.BTV454	DOWNSTREAM	193	42	25	14	32
12	BHZ 456	MIDDLE	360	/6	45	20	35
13	BHZ 456	DOWNSTREAM	116	35	25	17	22
14	BHZ 459	DOWNSTREAM	74	28.5	19	36	47
15	BHZ 462	DOWNSTREAM	70	26	20	60	100
16	old QFO.465	DOWNSTREAM	50	25	21		
17	UWB.474	UPSTREAM				67	69
18	UWB.474	DOWNSTREAM	62	25.7	32	64	76
19	old QDE.480	UPSTREAM	83	53.5	56		84
20	old QDE.480	DOWNSTREAM	126	82	93		
21	BSG.484	UPSTREAM	-	-		154	170
22	BSG.484	DOWNSTREAM	127	100	99	150	193
23	-	Vacuum chamber in the wall	-		-	124	170

Target operation in 2021-2022

2nd gen target autopsy

- Single lead cylinder (Ø60×40 cm²) in aluminium vessel, water-cooled
- In operation from 2009 to 2018

- Autopsy and radioactive waste packaging planned for summer 2023
- Executed with KUKA and Telerob robots

2nd gen target autopsy

- The borated-water moderator casing will be cut out and inspected to assess the presence of boron deposits
- The downstream window will also be cut out to expose the surface of the Pb core
- The upstream face of the Pb core will also be exposed with a similar procedure

2nd gen target autopsy

- Scanning of Pb surface by 3D scanner to quantify plastic deformation due to beam interaction and creep
- Cutting of the target frame for compact package in KC-T12 container for disposal in Swiss repository

Summary

- The n_TOF Target #3 successfully operates since July 2021 with a new design based on N₂cooled pure Pb plates. The new design is the result of 5 years of studies including material
 characterization activities, constitutive modelling, and beam irradiation tests.
- The new target is equipped with instruments for live monitoring of temperature, beam profile, and cooling parameters, also used for beam interlocks.
- Improvements in proton beam line and optics led to contained dose and thermo-mechanical loads opening possibility for further improvement in target performance
- An autopsy of the spent 2nd generation target is planned for summer 2023 to provide feedback on the long term structural effects on the target, after a decade of target operation
- Additional references:
 - <u>R. Esposito et al., Phys. Rev. Accel. Beams</u> 24, 093001 (2021)
 - <u>R. Esposito et al., J. Neutron Res. 22, 221 (2020)</u>
 - <u>R. Esposito, Design, prototyping, and thermo-mechanical modelling of a neutron spallation target impacted by</u> <u>high-energy proton-beam pulses in the n_TOF facility at CERN, Ph.D. dissertation, EPFL, Lausanne, Switzerland</u> (2022)

Additional slides

The n_TOF facility at CERN

Chart of nuclides

The n_TOF facility at CERN

Target #1 and target #2

- Target #1 operated from 2000 to 2004
- Target #2 operated from 2009 to 2018
- Based on pure lead cooled by water
- Abnormal increase of radioactivity in the cooling circuit
- Erosion/corrosion issues
- Cooling water contamination with radioactive products from target

Target #3: physics performance

Resolution function

Photon background

Neutron moderators

Explosive-welded bond between stainless steel vessel and AI-5083 moderator

Pb constitutive model for cyclic plasticity

- Better predictions of long term Pb behaviour → Multi-pulse simulations →
 → Pb constitutive behaviour under cyclic plasticity
- Strain-controlled cyclic tests at different temperatures and strain-rates (collaboration with Norwegian University of Science and Technology)
- Observed: Bauschinger effect, cyclic-hardening, non-Masing behaviour.
- Non reproducible by traditional models generally available in commercial FEM software

Pb constitutive model for cyclic plasticity

- Incremental plasticity model proposed
- Able to reproduce Bauschinger effect, cyclic hardening, and non-Masing behaviour.

$$\begin{split} \boldsymbol{\varepsilon} &= \boldsymbol{\varepsilon}^{\mathbf{e}} + \boldsymbol{\varepsilon}^{\mathbf{p}} + \boldsymbol{\varepsilon}^{\mathbf{th}} \\ \boldsymbol{\sigma} &= \mathbb{E} : \boldsymbol{\varepsilon}^{\mathbf{e}} \\ f &= \sqrt{\frac{3}{2}} (\boldsymbol{\sigma}' - \mathbf{X}) : (\boldsymbol{\sigma}' - \mathbf{X}) - R - \sigma_{y0} = 0 \\ \dot{\boldsymbol{\varepsilon}}^{\mathbf{p}} &= \dot{\boldsymbol{\lambda}} \mathbf{N} = \dot{\boldsymbol{\lambda}} \frac{\frac{3}{2} (\boldsymbol{\sigma}' - \mathbf{X})}{\sqrt{\frac{3}{2}} (\boldsymbol{\sigma} - \mathbf{X}) : (\boldsymbol{\sigma} - \mathbf{X})} \\ \dot{\boldsymbol{\lambda}} &= \sqrt{\frac{2}{3}} \dot{\boldsymbol{\varepsilon}}^{\mathbf{p}} : \dot{\boldsymbol{\varepsilon}}^{\mathbf{p}} \\ \dot{\boldsymbol{\lambda}} &= \sqrt{\frac{2}{3}} \dot{\boldsymbol{\varepsilon}}^{\mathbf{p}} : \dot{\boldsymbol{\varepsilon}}^{\mathbf{p}} \\ \dot{\boldsymbol{X}} &= \frac{2}{3} C \dot{\boldsymbol{\varepsilon}}^{\mathbf{p}} - \gamma \mathbf{X} \dot{\boldsymbol{\lambda}} \quad \text{Bauschinger effect}^{1} \\ \dot{\boldsymbol{R}} &= b (Q - R) \dot{\boldsymbol{\lambda}} \quad \text{Cyclic hardening} \end{split}$$

¹ P. J. Armstrong, C. O. Frederick, C.E.G.B. Report RD/B/N731, Berkeley, UK, 1966 ² J. Lemaitre et al., *Mécanique des matériaux solides*, 3rd ed., Dunod, 2009

The Ti64-clad Pb prototypes

Deformation Ti-6Al-4V lid \rightarrow Loss of contact with lead \rightarrow Loss of conductivity and cooling efficiency

Prototypes manufactured: **Displacements magnified 10X B: Copy of Static Structural** Pb cylinder with **Directional Deformation** Type: Directional Deformation(Y Axis) 4.54e-4 Unit: m 3.37e-4 Ti-6Al-4V cladding Global Coordinate System 2.20e-4 1.03e-4 Ti-6Al-4V tube Time: 4 -1.42e-5 Min Ti-6Al-4V lid 1.04e-3 Max 9.22e-4 8.05e-4 6.88e-4 **Bonded connection** 5.71e-4 (weld) 4.54e-4 3.37e-4 2.20e-4 1.03e-4 Gap -1.42e-5 Min Contact **Rotation** axi 0.02 (m)

Axisymmetric simulation

The Ti64-clad Pb prototypes

The Ti64-clad Pb prototypes

High bending stress (tensile) at the weld notch \rightarrow Addition of intermediate ring to improve stress distribution

Ti-6Al-4V-clad Pb with Be plates

N₂-cooled Pb blocks

N₂-cooled Pb prototype hardness

CFD and cooling optimization

Obstructing wedges to optimize N₂ flow distribution

 Average HTC
 63.8 W m⁻² K⁻¹

 Peak HTC
 130 W m⁻² K⁻¹

Beam irradiation tests

Beam irradiation tests

