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The n_TOF facility at CERN
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The n_TOF facility at CERN

n_TOF: neutron Time Of Flight

Irradiation campaigns on
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= High instantaneous neutron fluence (102 n/cm? in a single pulse)
= Wide energy spectrum (sub-thermal to 1 GeV)
= High energy resolution (AE/E = 10%)

Ideal for high signal-to-background ratio neutron cross-section
measurements on radioactive isotopes available only in small amounts




Design studies for the 3-gen target

Relative neutron fluence after target, EAR1

Many different design solutions investigated:
= Core materials (Pb, Ta, W, ...)

= (Cladding materials (Ta, Ti64, Inconel, ...)

= Cooling fluids (water, N,, Ar, ...)
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Design studies for the 3-gen target

Energy deposition (Monte Carlo)
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The 3-gen n TOF target

mmmp Nitrogen circuit
Demeniralized water circuit

=) Borated water circuit
=) Beam

Lead wedge
(Pur lead 99.99%)

Cover
(St Steel 316L Low cobalt <0.1%)

Moderator support
(Aluminium 6082)

Cradle assembly

(Aluminium 6082+ Pur lead 99.99%)

Vessel
(St Steel 316L)

Total weight:

1900 Kg

Moderators
(Aluminium 5083)
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Thermal behaviour

K: Pb transient thermal
Temperature

Unit: °C
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Design parameters

Pulse intensity 10!3 p*
Beam momentum 20 GeV/c
Pulse energy 32 kJ
Pulse length 25 ns (4c)
Beam size (Gaussian) 15 mm (10)
Average intensity 1.67x1012 p*/s
Average current 0.27 pA
Average power 5.4 kW
Peak current 91.3 A
Peak power 1.8 TW

Peak temperature in 2" slice: 135°C

Lead melting temperature: 327°C




Studies on creep effect

Lead creep — risk of obstructing cooling channels

New User Programmable Feature coded in ANSYS
For each segment on a log-log plane:
E=c-o™

von Mises equivalent stress [MPa]
1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 1E+2

e 20 °C
1E-1
— 1E-2 —a—50°C
% 1E-3 =100 °C
E 1E-4 8150 °C
§ 1E-5 —a—200°C
‘i 1E-6 —8—250 °C
g 1E7 —e—300°C
5 1E8
1E-9
1E-10
g
= 2x10%ssimulated (6 years and 4 months of continuous uosioo
operation or twice the target lifetime) !
= Also useful to perform CFD simulations in degraded scenarios il
beam axis :
0.00 100.00 200.00 (mm)
[ ]

50.00 150.00

(deformations amplified for better visualization)







Pb constitutive model for cyclic plasticity
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Beam irradiation tests in HiIRadMat
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Beam irradiation tests in HiIRadMat

Ti-6Al-4V-clad lead N,-cooled lead slices

Vertical
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Beam irradiation tests in HiRadMat
PIE N,-cooled Pb prototype

Neutron tomography at NEUTRA (PSI)
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No detectable voids down to 100 um







Beam irradiation tests in HiIRadMat

Ti64-clad Pb prototype
Lead cylinder 2
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Huge oscillations of stress on the beam axis and below the cylindrical surface




Beam irradiation tests in HiIRadMat

After 1000 pulses of
3.6x1012 p*

Neutron tomography at
ILL (Grenoble)

Voids in the lead cylinder
Ti-6Al-4V cladding intact
and content sealed

Upstream half

Upstream beryllium plate cracked

Downstream half







Target operation in 2021-2022

n_TOF Target Thermocouples

Mumbered from proton side to neutron side
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Target operation in 2021-2022

15x15 mm2 RMS 16x7 mm?2 RMS

Dose rate (measured at 1 m) after
/4\\ modifications in the beam line with improved
/““ \ optics during the end-of-year technical stop

Dose rate [usv/h] Dose rate [pSv/h] Dose rate [pSv/h] Dose rate [pSv/h] Dose rate [usv/h] |I
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Target operation in 2021-2022

Removal of the two last quadrupoles upstream of the target and
improvement of the optics during the end-of-year technical stop
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2"d gen target autopsy

= Single lead cylinder (©@60x40 cm?) in aluminium vessel, water-cooled
= |n operation from 2009 to 2018 |

Moderator

=  Autopsy and radioactive waste packaging
planned for summer 2023
=  Executed with KUKA and Telerob robots




2"d gen target autopsy

= The borated-water moderator casing will be cut out and inspected to assess the
presence of boron deposits

= The downstream window will also be cut out to expose the surface of the Pb core

=  The upstream face of the Pb core will also be exposed with a similar procedure

(e

I




2"d gen target autopsy

= Scanning of Pb surface by 3D scanner to quantify plastic deformation due to beam
interaction and creep

= Cutting of the target frame for compact package in KC-T12 container for disposal in
Swiss repository

Sand

—— Steel box

Mortar

KC-T12




Summary

The n_TOF Target #3 successfully operates since July 2021 with a new design based on N,-
cooled pure Pb plates. The new design is the result of 5 years of studies including material
characterization activities, constitutive modelling, and beam irradiation tests.

The new target is equipped with instruments for live monitoring of temperature, beam
profile, and cooling parameters, also used for beam interlocks.

Improvements in proton beam line and optics led to contained dose and thermo-mechanical
loads opening possibility for further improvement in target performance

An autopsy of the spent 2"d generation target is planned for summer 2023 to provide
feedback on the long term structural effects on the target, after a decade of target operation

Additional references:
= R. Esposito et al., Phys. Rev. Accel. Beams 24, 093001 (2021)
= R.Esposito et al., J. Neutron Res. 22, 221 (2020)
= R. Esposito, Design, prototyping, and thermo-mechanical modelling of a neutron spallation target impacted by
high-enerqgy proton-beam pulses in the n _TOF facility at CERN, Ph.D. dissertation, EPFL, Lausanne, Switzerland

(2022)



https://doi.org/10.1103/PhysRevAccelBeams.24.093001
https://doi.org/10.3233/JNR-190137
http://dx.doi.org/10.5075/epfl-thesis-8370

Additional slides




The n_TOF facility at CERN

Chart of nuclides

Nuclear astrophysics

Stellar nucleosynthesis
Big Bang nucleosynthesis

Nuclear technology

Nuclear reactors (energy)
Waste management

Z, number of protons

Nuclear medicine ¥

Neutron capture therapy
Radioisotope production

N, number of neutrons
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The n_TOF facility at CERN

Target #1 and target #2

= Target #1 operated from 2000 to 2004

= Target #2 operated from 2009 to 2018

= Based on pure lead cooled by water

=  Abnormal increase of radioactivity in
the cooling circuit

=  Erosion/corrosion issues

=  Cooling water contamination with

radioactive products from target

Moderator




Target #3: physics performance

Neutron flux Resolution function
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Neutron moderators

Explosive-welded bond between stainless steel vessel and Al-5083 moderator
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Pb constitutive model for cyclic plasticity

Better predictions of long term Pb behaviour — Multi-pulse simulations —

— Pb constitutive behaviour under cyclic plasticity

Strain-controlled cyclic tests at different temperatures and strain-rates (collaboration with Norwegian
University of Science and Technology)

Observed: Bauschinger effect, cyclic-hardening, non-Masing behaviour.

Non reproducible by traditional models generally available in commercial FEM software

15 T T T T T T T 15 T T T T T T T
. . Ext[%] vs Force [kN] RT
Strain-rate: 102 s Strain-rate: 10-1 s Ext[%] vs Force [kKN] 90°C
Ext[%] vs Force [kN] 150°C
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Ext[%] vs Force [kN] 90°C
Ext[%] vs Force [kN] 150°C
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Pb constitutive model for cyclic plasticity

Incremental plasticity model proposed
Able to reproduce Bauschinger effect, cyclic hardening, and non-Masing behaviour.

g=¢®+eP+eth

o=E:¢® ) 5
Strain memory model

3
f=\/5(0’—X):(o’—X)—R—ay0=0 >
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ngcép—yX/l Bauschinger effect ! _\/%(sp_c):(sp_C) =
R=b(Q-R)A Cyclic hardening Q=Qu—(Qu—Qo)e

1P, J. Armstrong, C. O. Frederick, C.E.G.B. Report RD/B/N731, Berkeley, UK, 1966
2], Lemaitre et al., Mécanique des matériaux solides, 3" ed., Dunod, 2009




The Ti64-clad Pb prototypes

Deformation Ti-6Al-4V lid — Loss of contact with lead — Loss of conductivity and cooling efficiency

Prototypes manufactured:
Pb cylinder with
Ti-6Al-4V cladding

Pb cylinder

6.88¢-4

i 571e-4 Bonded connection
4.58e-4 (weld)
3.37e-4

B N 2.20e-4

4 1.03e-4
-1.42e-5 Min Gap Contact

Rotation axis

Axisymmetric simulation




The Ti64-clad Pb prototypes

Desired contact pressure profile . . .
o ) . Contact pressure as reaction of imposed deformation
between Ti lid and Pb (axisymmetric)

12
Type: Pressure
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—_—
g cmen 1.126e5 Max
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........................

Ti lid deformation due to desired contact pressure

4

Be plate imposing desired deformation

e - !TBe (~15 mm)
— Ti64 (0.5 mm)

]

Ti64 (0.5 mm)

Be (‘~15 mm)
Be transparent to neutrons




The Ti64-clad Pb prototypes

High bending stress (tensile) at the weld notch — Addition of intermediate ring to improve stress distribution

Intermediate
Ti-6A1-4V
ring

Action ring-tube
induces helpful
bending moment

Compressive stress
at the weld notch

Pressure from Pb =}







Beam irradiation tests in HiIRadMat

Ti-6Al-4V-clad Pb with Be plates




N,-cooled Pb prototype hardness
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CFD and cooling optimization

Obstructing wedges to optimize N, flow distribution

Rib 5
N, channel = 40r
£ 35 %)
Obstructing wedge £ o
/ 2 301 g
Q }
§ 25¢ g
20+ g
3 :
§ 15 [
< 10r
5 Enhanced|cooling region
(no obstruction ribs)
G 1 1 F 4 1 1 20
-300 -225 -150 -75 0 75 150 225 300
y - Position [mm]
-0 N on 2" slice downstream face ~ --o-— N, on 6% slice upstream face
6t Lead slice 2nd Lead slice

Average HTC 63.8 W m2K!
Peak HTC 130 W m2K!




Beam irradiation tests

Motors for vertical positioning of prototypes

N,-cooled Pb
prototype

Sl
Downstream
Upstream beam window

beam windows IR = -

Ti-6Al-4V-clad Pb
prototype

Upstream module Downstream module
(other tests) (n_TOF prototypes)




Beam irradiation tests

Motors vertical movement modules

Tank irflowd 1

connection =

'Compressedair;

inlet;outlet

LED lights

Radiation hard
glass viewports

A\

Radiation hard

cameras

= N,cooled l{p prototype
(n_TOF module)
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