INTDS 2022: 25 - 30 September 2022, PSI Switzerland

A new cryogenic target at LNL: CTADIR project

Matúš Sedlák, matus.sedlak@lnl.infn.it

Outline

- Scientific motivation
- Target design
- Performance
- Commissioning experiment

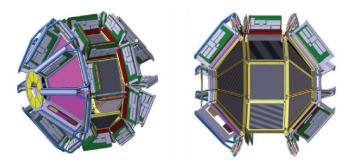
Scientific motivation

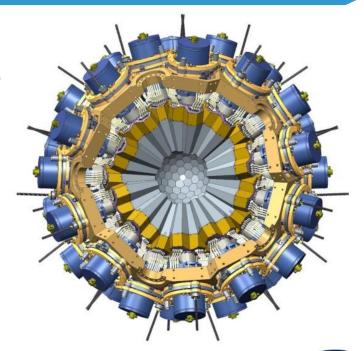
- Direct reactions are used to study the single-particle structure and shell evolution
- Cross section angular distributions of single-particle transfer reactions provide the overlap between the initial and final states of the reaction
- Compare to (d,p), reaction with He can populate both single-particle and corecoupled states
- Inelastic scattering of the beam on a ⁴He target allows one to study the Pygmy
 Dipole Resonance isoscalar component
- ISOL facilities impinging the radioactive ion beam on the light target
- Requirements: high purity He with desired thickness 10²⁰ at/cm²
- Cryogenic TArget for DIrect Reaction (CTADIR) project has been developed with the idea of coupling it to detector arrays like AGATA and GRIT
- Path for the study of direct reactions with exotic nuclei and inelastic scattering studies at LNL

SPES@LNL

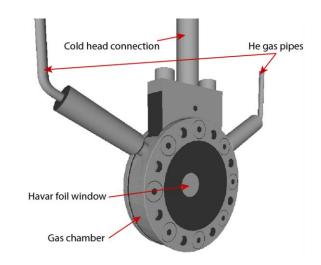
- Selective Production of Exotic Species
- Second generation ISOL system neutron rich beams
- Post acceleration to 10-15 MeV/u

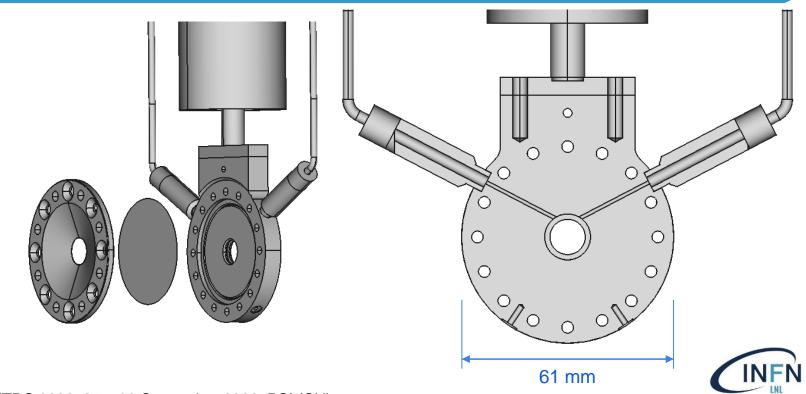
- The SPES project is divided into the following 4 phases:
- SPES-alpha: production and delivery to the target of Cyclotron proton beams
- SPES-beta: production and acceleration of radioactive ion beams with the ISOL technique
- SPES-gamma: production of radionuclides of medical interest
- SPES-delta: generation of neutron sources


SPES@LNL

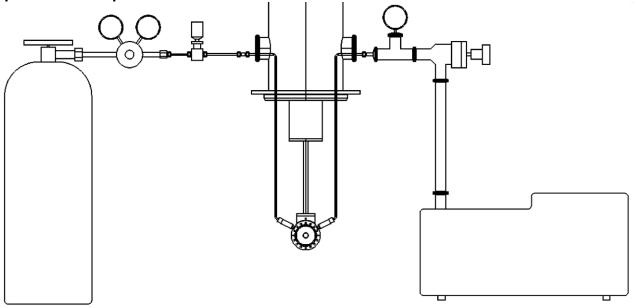


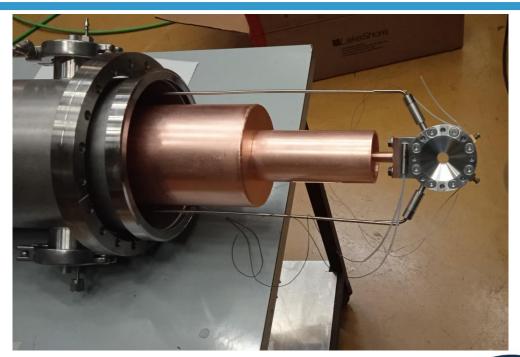
AGATA + GRIT


- Advanced GAmma Tracking Array
- Granularity, Resolution, Identification,
 Transparency
- A new generation silicon array
- ~2000 strips
- Limited space

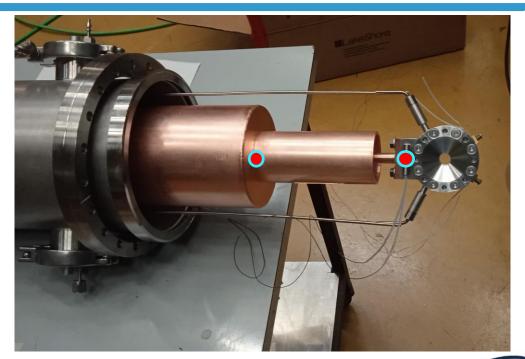


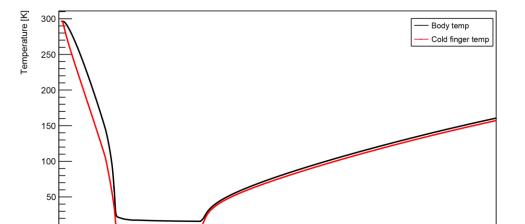
- CT body made out of Al alloy
- 2x 3.8 µm thick Havar windows 10 mm diameter
- Anchored to a copper cold finger
- Two-stage Gifford-McMahon cryocooler connected to a 7 kW water-cooled compressor unit
- Copper thermal shield attached to the first stage of the cryocooler - reduce radiation heat load from the detectors
- Designed to allow detection of the reaction products in the total angle of 140° on both sides
- Operational temperature 8-10 K
- Window to window distance is 4 mm




Laboratori Nazionali di Legnaro

- Static gas closed valves during operation
- Up to 1 bar pressure



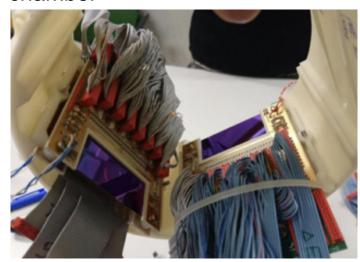


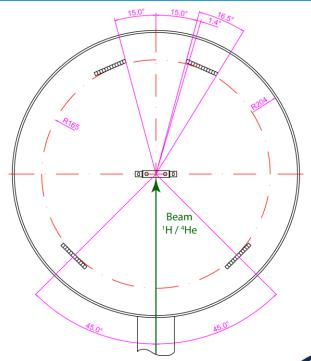
Performance

- Diode and CERNOX sensors
- Cool-down ~1 hour
- Warm-up >18 hours
- 3.4 K cold-head alone
- 4.8 K cold finger base
- 8.9/17 K target body

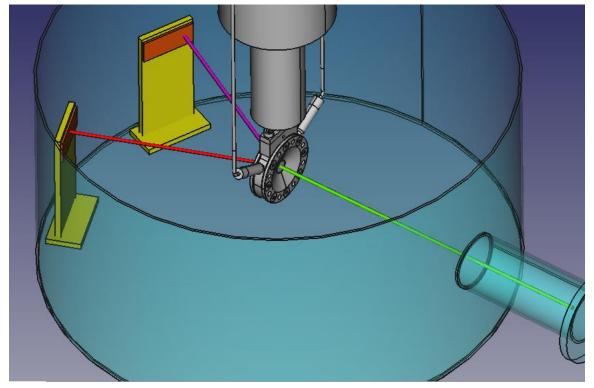
Measurement body vs cold finger: Temp vs time

Time [min]


Commissioning experiment


- Characterisation of the target homogeneity:
 - ➤ ¹H @ 4 MeV and intensity of 1 pnA
 - > Beam will be focused to different points of the CTADIR Havar window
 - ➤ Performed in 3 conditions of the gas cell: empty at room temperature, filled with ⁴He gas at pressure of 1 bar and room temperature and filled with pressurised ⁴He gas to 1 bar at temperature of 9 K
 - > Silicon detectors will be placed at forward and backward angles
- Mott scattering measurement:
 - ➤ ⁴He @ 10 MeV and intensity of 1 pnA
 - ➤ CT filled with ⁴He gas @ 0.5 bar and temperature of 9 K.
 - ➤ GalTRACE and target distance set to 16.5 cm -> each segment will cover an angle of 1.4°
 - ➤ Angular coverage of detectors will be from 15° to 31.5°
 - ➤ Obtained experimental results will be compared to the published calculated and measured values
 - ➤ We will perform a run with the empty target also to subtract the scattering on Havar windows

Experimental setup


- GalTRACE, silicon-detector array
 Each detector has 12 × 5 segments of $4 \times 4 \text{ mm}^2$
- Placed in our 40 cm wide reaction chamber

Laboratori Nazionali di Legnaro

Experimental setup

Thank you for your attention

M. Sedlák¹, I. Zanon¹, A. Goasduff¹, D. Brugnara¹, A. Gottardo¹, R. Pengo¹, F. Crespi², S. Capra², E. Gamba², I. Lombardo³, F. Recchia⁴

¹ Laboratori Nazionali di Legnaro, Legnaro, Italy
 ² Università degli Studi di Milano and INFN-Milano, Milano, Italy
 ³ INFN- Catania, Catania, Italy
 ⁴ Università degli Studi di Padova and INFN-Padova, Padova, Italy