

Ni target development for TULIP project

Pascal Jardin¹, Vincent Bosquet¹, Samuel Damoy¹, Georges Frémont¹, and Marion MacCormick²

¹GANIL, Grand Accélérateur National d'Ions Lourds, Bvd H. Becquerel, BP55027 14076 Caen cedex5, France ² IJCLab, Institut Joliot Curie Laboratory, 15 Rue Georges Clemenceau, 91400 Orsay, France

Production of radioactive ion beams at GANIL/SPIRAL1

Method: Isotope Separator On Line

Primary beams: from C to U, Energy up to 95 MeV/A

- Thick target, from C to Nb
- « Thin » targets: submitted to safety autorisation for M > Nb

3

Principle

TULIP IPN

Thermal tests with TULIP V2: 4 μm thick pure Ni target

Annealing: 3 hours at up to 1350°C

catcher temperature measurement

Shrinking and tearing of the foil

Ni foil supplier: Goodfellow, réf LS 482946 5 INTDS, PSI 25-30 September 2022

P. Jardin, GANIL

Thermal tests

Behaviour of the target foil at high temperature (1350°C max.): 3 targets tested

- One with TULIP V1: temperature difference of 450°C* at the surface of the target.
 Lifetime : ~3 hours at ~1310°C
- Two with TULIP V2: temperature difference of 153°C*. Lifetime : ~3 hours at 1350°C and ~8 hours at ~ 1300°C at maximum

 Temperature difference reduced to 109°C* on TULIP V3 and target mounted with more slack → beginning of shrinking after 2,5h x 1040°C

* According to ANSYS simulations

7

Systematic annealing \overrightarrow{ANR} (\overrightarrow{COTS} TULIP of pure Ni (4 µm) foil in a graphite oven

Frame and sample in the oven

6.2.2020, 2^hx800°C + 2^hx837°C

7.2.2020, 2^hx800°C + 2^hx837°C + 2^hx939°C

Samples for microscopic analysis

11.2.2020, 2^hx800°C + 2^hx837°C + 2^hx939°C + 2^hx1050°C

12.2.2020, 2^hx800°C + 2^hx837°C + 2^hx939°C + 2^hx1050°C + 2^hx1195°C

13.2.2020, 2^hx800°C + 2^hx837°C + 2^hx939°C + 2^hx1050°C + 2^hx1195°C + 2^hx1285°C

14.2.2020, 2^hx800°C + 2^hx837°C + 2^hx939°C + 2^hx1050°C + 2^hx1195°C + 2^hx1285°C + 15^hx1293°C

IPN

P. Jardin, GANIL

INTDS, PSI 25-30 September 2022

What changes in the target?

16 h x 1300°C ~500h x 1100°C

After the first annealing cycle

Possible saturation

New test to verify the saturation existence

Result

- Can be handled after annealing but more fragile
- Evaporation rate of 4,7%
- Relative shrinking higher than 10%: no saturation!

Pure Ni target used at 1300°C, and even at 1110°C must be abandonned

How to stabilize the target material? or How to limit the mobility of the atoms?

By adding another element?

Which one?

P. Jardin, GANIL

INTDS, PSI 25-30 September 2022

CNIS TULIP

Mobility of atoms in a material <-> Diff. Coefficient

HANDBOOK OF SELF-DIFFUSION AND IMPURITY DIFFUSION IN PURE METALS » DE G. NEUMANN ET

→ Mo could be an adequat material.

(Binary phase diagrams of 40 potential Ni-X alloys have also been considered)

First test with a sample of Mo (0,09 μm) - Ni (4μm) -Mo (0,09 μm)

Mo deposited on Ni by evaporation

Before annealing

After annealing

Relative shrinking lower than 1% (10% for pure Ni at 1110°C x 31h) Relative mass evaporation of 0.8% (> 4,2% for pure Ni at 1290°C x 15h)

→ Encouraging result, but will it be sufficient for 7 days?

→ Next test with 0,3 µm of Mo on each face, and at lower temperature

IPN

How to reduce the target temperature?

By placing the target 60 mm upstream from the cavity,

- T_{target} = 370°C without beam
- $T_{target} \sim 1100^{\circ}$ C with 30W of beam deposited in the target

Realization of a Mo (0,3 µm) - Ni (4µm) -Mo (0,3 µm) sandwich target

Mo deposited on Ni by cathodic sputtering

Done by Kerdry company https://kerdry.com

Mo thickness measured on each face after deposition: 0,3 μm +/- 2%

After 98 hours of annealing at an average temperature of ~1000°C

- Foil still flexible, easy to handle
- Relative shrinking close to 0% (>10% for pure Ni after 31h07 at 1110°C)
- Relative mass evaporation of 10% (> 4,7% for pure Ni after 31h07 at 1110°C)

➔ Acceptable for the first on-line test

P. Jardin, GANIL

INTDS, PSI 25-30 September 2022

On line test: ²²Ne Beam @ 4,5 MeV/A

Excessive focussing or power density of the beam (sputtering excluded)

 \Rightarrow Beam characteristics must be better controlled

Preliminary conclusion

Mo(0,3 μ m)-Ni (4 μ m)-Mo (0,3 μ m) sandwich

- seems to satisfy the stability requirement of the target if used at 1100°C
- allows to work for few hours (and to produce neutron deficient Rb⁺ ions)
- Beam power density must be better controlled (or/and reduced) to test its life-time
- Next on-line test is expected by Spring 2023

Thank you for your attention

Pascal Jardin¹, Vincent Bosquet¹, Samuel Damoy¹, Georges Frémont¹, and Marion MacCormick²

Which material could be associated to Ni?

	1		Bi	Binary phase diagrams studied of Ni + X														18
1		2											13	14	15	16	17	
2		Be											В	С		0		
3			3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S		
4		Са	Sc	Ti	V	Cr		Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se		
5			Υ	Zr		Мо		Ru	Rh	Pd	Ag	Cd		Sn	Sb	Те		
6					Та	W	Re	Os		Pt	Au			Pb	Bi			
7																		
				Ce, Dy, Er, Gd, Pr, Pu, Sm, U, Yb														

Pink: need a specific safety study

Orange: complex phase diagram or too low fusion temperature (<1570K)

Green : phase diagram ok and alloy fusion temperature > 1573K

Cr, Co and Cu are too close to Ni

→ Mo, Ru and Rh could be good candidates

Mobility or self-diffusion versus fusion temperature

	1																	18
1		2											13	14	15	16	17	
2		Be											В	С		0		
3			3	4	5	6	7	8	9	10	11	12	Al	Si	Р	S		
4		Ca	Sc	Ti	V	Cr		Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se		
5			Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd		Sn	Sb	Te		
6					Та	W	Re	Os		Pt	Au			Pb	Bi			
7																		

P. Jardin, GANIL

INTDS, PSI 25-30 September 2022 23

Ni-Mo phase diagram

Okamoto, H. Supplemental Literature Review of Binary Phase Diagrams. Phase Equilib. Diffus. **35**, 208–219 (2014).

What about sputtering?

P. Jardin, GANIL