

Water as a Target for Heavy Ion Irradiations

<u>Greg Severin</u>, Katharina Domnanich, Chirag Vyas, Paige Abel, Hannah Clause, Scott Essenmacher, Samridhi Satija, Morgan Kalman, Wesley Walker, Chloe Kleinfeldt, Tracy Edwards, Jose Blanco and Vlad Bodnar

This material is based upon work supported by the U.S. Department of Energy Office of Science Isotope Program

FRIB is a Nuclear Physics Laboratory at Michigan State University in the US

The Heart of FRIB is a Linear Heavy Ion Accelerator

For example:

- $^{48}Ca^{20+}$ is accelerated to > 200 MeV/nucleon, 1-50 μ A (up to 400kW)
- The beam hits a thin target and creates fragmentation-product radionuclides inflight
- The fragmentation products are steered to experimental stations downstream

90% of the FRIB Beam is Dumped

Figure adapted from Dali Georgobiani, FRIB Radiation Studies, HPT Workshop, June 2018

Facility for Rare Isotope Beams

What can you do with excess beam (instead of dumping it)?

(Photo: Jerry Nickles, UW)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

The FRIB water-filled beam dump

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Greg Severin, INTDS 2022, Slide 6

Rare Isotope Production at NSCL/FRIB and Isotope Harvesting

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

"Harvesting"

(Purify radionuclides using chemistry instead of magnets)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Greg Severin, INTDS 2022, Slide 8

FRIB initial harvesting opportunities

²³⁸U beam

- ²¹¹Rn
- ²²⁹Pa
- ²²⁵Ra

■ <u>48Ca beam</u>

- ⁴⁷Ca
- ²²Na

⁷⁸Kr beam

- ^{76,77}Kr
- ^{72,73}Se

Journal of Physics G: Nuclear and Particle Physics

MAJOR REPORT • OPEN ACCESS

Isotope harvesting at FRIB: additional opportunities for scientific discovery

https://iopscience.iop.org/article/10.1088/1361-6471/ab26cc

Facility for Rare Isotope Beams

The Challenges of Using Water as a Target

- Beam + Water = Radiolysis
 - Radiolysis chemistry affects harvesting (oxidation state, materials lifetimes)
- Extremely Dilute Analyte
 - We need to collect a small amount of radionuclides out of a big amount of water, gas, and solids
- Many nuclear reactions and products
 - A Short ⁴⁸Ca irradiation at NSCL created 16 quantifiable radionuclides

Radiolysis of Water: see Kathi's Talk

Facility for Rare Isotope Beams

Dilute Samples (orders of magnitude)

 $\mathbf{0}_{2}$

- FRIB beam dump cooling system:
 - 10⁴ L of water moving at 10¹ L per second
- Beam at full power is few x 10¹⁴ particles per second
 - ~100 pmol / sec
- Production rates for interesting radionuclides
 - 10⁻³ per incoming beam particle
- After 1 day of irradiation we have 10⁴ pmol of analyte in 10⁴ L of water

 N_2, H_2O N₂, H₂ **118 L/s** Gas Loop: 6430 L Gas Loop **Two-phase Flow:** Drier water: 4.6 L/s gas: 2 L/s 115 L/s Gas Liquid **Delay Tank** Separator **Cooling Water Loop** 4.6 L/s **Beam Dump** PUMP 6.2 L/s 4.6 L/s **Heat Exchanger** 1.6 L/s **Cleanup Loop** 1.6 L/s **Resin Beds** Harvesting

• 1 pM

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Recombiner

 N_2

Michigan State University

Primary

Bear

Total System Volume

Water Loop: 6930 L

Lots of different radionuclides (many of them are even *isotopes*)

• Number of atoms of each radionuclide after 1 year irradiation with 48Ca at full power and 1 hour of decay time (82 of them).

		_									
Н	3	6.3527E+16	Р	32	1.3709E+14	К	45	1.2913E+10	Cr	48	1.1633E+09
Be	7	2.0295E+15	Р	33	2.4382E+14	Са	41	4.4684E+14	Cr	49	6.9912E+07
Be	10	3.0339E+15	S	35	7.6601E+14	Са	45	3.3508E+15	Cr	51	9.5152E+11
С	11	8.3518E+10	S	37	1.4568E+06	Са	47	1.3929E+14	Cr	56	1.0048E+03
С	14	4.9262E+15	S	38	1.2860E+11	Са	49	1.2435E+04	Mn	51	2.9846E+07
Ν	13	2.9783E+09	C1	34	3.3612E+01	Sc	43	4.4011E+10	Mn	52	3.9663E+10
0	15	2.7865E+02	C1	34m	9.5043E+04	Sc	44	1.5939E+11	Mn	54	4.4063E+12
F	18	2.3846E+11	C1	36	2.5272E+15	Sc	44m	3.9891E+06	Mn	56	4.2795E+08
Ne	24	4.8824E+03	C1	38	8.3869E+10	Sc	45m	2.0263E+01	Fe	53	3.4439E+04
Na	22	7.2429E+14	C1	39	9.2883E+10	Sc	46	2.2702E+14	Fe	55	3.4221E+12
Na	24	2.1228E+12	Ar	37	1.3631E+14	Sc	47	1.1699E+14	Fe	59	2.8973E+10
Na	24m	4.8636E-01	Ar	39	3.4234E+15	Sc	48	2.9319E+12	Co	55	2.7141E+08
Mg	27	1.6953E+08	Ar	41	3.9803E+11	Sc	49	8.7059E+07	Co	56	1.4357E+11
Mg	28	6.4270E+11	Ar	42	1.8127E+15	Τi	44	5.6037E+12	Co	57	1.1014E+12
Al	26	6.4307E+14	Ar	43	6.1738E+06	Τi	45	3.9499E+09	Co	58	6.0730E+11
Al	28	1.1501E+09	Ar	44	8.5279E+08	Τi	51	3.6622E+03	Co	60	3.8073E+11
Al	29	3.2604E+07	K	38	1.1017E+07	V	47	5.4104E+07	Co	61	1.3424E+06
Si	31	3.7319E+11	K	42	5.5279E+12	V	48	4.7153E+11	Ni	56	1.7450E+08
Si	32	5.8209E+14	K	43	1.5616E+13	V	49	8.6685E+12	Ni	57	1.7296E+08
Ρ	30	2.3370E+02	K	44	3.8731E+10	V	52	2.6685E+02	Cu	62	1.8972E+05
									Zn	62	1.0549E+07

Facility for Rare Isotope Beams

The Harvesting Process was Tested at "NSCL" (FRIB's Predecessor)

Objective: Collect by-product radionuclides for use in off-line experiments. **Benefits:** NSCL/FRIB produce a vast number of useful radionuclides. Harvesting will expand the user base and provide otherwise difficult-toobtain radionuclides.

Cooling water

Heavy-ion beam reacts in beam dump

Return carries reaction products

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Greg Severin, INTDS 2022

Reaction products removed for chemical

processing offsite

Targetry: Miniature Beam Dump

Avilov, M; et.al. Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB. *Nucl. Instrum. Methods Phys. Res. B*, **2016**, 376, 24-27.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Production of Target

3D printed

- Ti64 alloy powder (EOS Ti64)
- Direct metal laser sintering (DMLS)
- CT image of the product
 - Measured thicknesses of thin walls
 - Looked for bubbles in the walls

- Testing the target:
 - Irradiate with high beam current
 - Look for evidence of degradation

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Proton Irradiation Experiment

- 16 MeV protons from University of Wisconsin Cyclotron Lab
 - 4 irradiation periods: 6, 19, 28, 33 μ A
- Measurements
 - Activity of ⁴⁸V and ⁵¹Cr in system water after each period
 - Total activity of ⁴⁸V and ⁵¹Cr in target face
- One complication: nuclear recoil
 - Forward momentum transfer
 - Estimated activity that left the window

Alexander, J.M.; Sisson, D.H. Recoil Range Evidence for the Compound-Nucleus Mechanism in Reactions between Complex Nuclei. *Phys. Rev.* **1962**, *128*, 2288.

Beam Current

Radiation Accelerated Corrosion? Proton Irradiation Test

Facility for Rare Isotope Beams

Quantifying Target Degradation

- Basic model:
 - Small time steps
 - Accumulation of ⁴⁸V in target face
 - Degradation of ⁴⁸V into the water
 » Dependence on beam current and activity in target face
 » Remove activity from nuclear recoil
- Rate: 1.47E-6 µm/(µA*s)

 $(X^2 = 1.4)$

Is this a sufficient model?

How does this apply to NSCL and FRIB beams?

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

One Way to Extrapolate

- Scale degradation rate by areal power deposition:
 - Worst Case Scenario for FRIB's dump = 10% degradation after 4000h ²³⁸U beam at 400kW.

Summary of Experimental Progress

Facility for Rare Isotope Beams

Paige Abel

Calcium-48 Beam -- Production

	Dereent	Projected Activity at NSCL (GBq)						
	Conversion	After 5-day Irradiation	After 24-hour cool down					
Na-24	0.084(2)	0.378(7)	0.125(2)					
Mg-27	0.0311(8)	0.140(3)	-					
Mg-28	0.0187(7)	0.082(3)	0.037(1)					
S-38	0.0129(8)	0.058(3)	1.7(1)E-4					
CI-34m	0.00039(5)	0.0177(6)	-					
CI-38	0.116(5)	0.58(4)	-					
CI-39	0.066(2)	0.297(9)	-					
K-42	0.343(7)	1.54(3)	0.402(8)					
K-43	0.422(3)	1.85(1)	0.878(6)					
K-44	0.26(4)	1.2(2)	-					
K-45	0.16(1)	0.74(5)	-					
Ca-47	1.69(2)	4.05(4)	3.48(3)					
Sc-44m	0.482(8)	0.164(2)	0.124(2)					
Sc-46	0.52(1)	0.095(2)	0.094(2)					
Sc-47	0.41(2)	3.2(3)	3.5(4)					
Sc-48	0.220(2)	0.841(9)	0.580(6)					

Facility for Rare Isotope Beams

E. Paige Abel, Katharina Domnanich, Hannah K. Clause, Colton Kalman, Wes Walker, Jennifer A. Shusterman, John Greene, Matthew Gott, and Gregory W. Severin*

Greg Severin, INTDS 202223

Calcium-48 Beam – Radiolabeling ⁴⁷Sc-DTPA-TOC

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Krypton-78 Beam

Facility for Rare Isotope Beams

Krypton-78 Beam – isolating ^{radio}Kr

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

⁷⁷Kr Mass Transport Results

1.18(6) x 10⁻² nuclei of ⁷⁷Kr per incident ⁷⁸Kr ion

Krypton-78 Beam – Generating pure ⁷⁶Br

Krypton-78 Beam – Generating pure ⁷⁶Br

2 in one- ⁶²Cu generator

Conclusions

- Water is an interesting target for heavy ion irradiation
 - We have learned a lot in the 1-500W regime
 - » Radiolysis and Radiation Accelerated Corrosion must be considered
 - » Combining cooling and transport is effective for water soluble products
 - » Some products will be purity limited, but there are several interesting cases where high purity can be reached.
 - Extrapolations look promising for future irradiations at 1000x power, but....

• We have a lot to learn!

Acknowledgements

Isotope Program

Office of Science

U.S. Department of Energy

Michigan State University

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Greg Severin, INTDS 2022, Slide 32