PAUL SCHERRER INSTITUT

Rugard Dressler & Dorothea Schumann :: Laboratory of Radiochemistry :: Paul Scherrer Institut

Isotope Production at PSI

30th Conference of the INTDS, 25 – 30 September 2022, PSI, Switzerland

Spallation Reactions a source for exotic isotopes

all elements with $Z \le Z_{target} + 1$ produced

PSI at night

Proton accelerator facilities at PSI

Proton accelerator facilities at PSI

D. Schumann, J. Neuhausen: J Phys. G 35 (2008) 014046

Nuclide distribution in Copper beam dump

total stored material about 500 g copper

radio nuclides inventory

²⁶ AI	7 kBq	≈ 2.3 × 10 ¹⁷ atoms
³² Si	10 MBq	≈ 7.8 × 10 ¹⁶ atoms
⁴⁴ Ti	100 MBq	≈ 2.8 × 10 ¹⁷ atoms
⁵³ Mn	500 kBq	≈ 8.4 × 10 ¹⁹ atoms
⁵⁹ Ni	8 MBq	≈ 2.7 × 10 ¹⁹ atoms
⁶⁰ Fe	5 kBq	≈ 5.9 × 10 ¹⁷ atoms

D. Schumann, et al.: Radiochim. Acta 97 (2009) 123

Experiments with ⁶⁰Fe

Dat

Half-life measurements

old adopted value

t_{1/2} = 1.5 My W.Kutschera, et al.: NIM B 5 (1984) 430

new value t_{1/2} = 2.62 My

• G.Rugel, et al.: Phys. Rev. Lett. **103** (2)

Phys. Rev. Lett. 103 (2009) 072502

- A.Wallner et al.: Phys. Rev. Lett. **114** (2015) 041101
- K.M.Ostdiek, et al.: Phys. Rev. C 95 (2017) 055809

 ⁶⁰Fe(n,γ)⁶¹Fe at stellar neutron temperatures kT = 25 keV

<σ> = 5.6 mbarn

E.Uberseder, et al.:

Phys. Rev. Lett. 102 (2009) 151101

thermal neutrons capture
T.Heftricht, et al.:
Phys. Rev. C 92 (2015), 015806

Objective: (Exotic Radionuclides from Accelerator WAste for Science and Technology)

Exploitation of accelerator waste for isolating rare exotic radionuclides

History:

- Radiochemical analytics of activated components for disposal
- Results showed high content of several rare isotopes
- Looking for potential users of these isotopes: I. ERAWAST workshop 2006 (PSI), funded by ESF
- Five-years working program
- II. ERAWAST workshop 2011 at PSI: first results and future program
- CHANDA-workshop in 2015
- ~ 20 Partners
- Member of n_TOF

Collaboration between

Nuclide production facilities

Basic nuclear physics research

Nuclear astrophysics

AMS measurement groups

Environmental chemistry

Used Isotopes from ERAWAST

¹Nucleonica GmbH, Magdeburger Str. 2 76139 Karlsruhe, Germany

²European Commision, Joint Research Centre Directorate G – Nuclear Safety and Security P.O. Box 2340, 76125 Karlsruhe, Germany

Medical Radionuclide Production at PSI

Actinide Isotope Separator Laser resonance ionization

10 cm

Eur. Phys. J. Appl. Phys. **97** (2022) 19

Summary and outlook

- Exotic radionuclides are produced in components of the 590 MeV proton accelerator at PSI
- After chemical separation, these isotopes are available for scientific applications
 - Nuclear astrophysics
 - Geoscience
 - Basic nuclear physics
- PSI owns a store house of several very rare isotopes, some of them being unique world-wide in quality and quantity (^{7/10}Be, ³²Si, ⁵³Mn, ⁶⁰Fe and others)
- Examples for front-end experiments using our material
 - ⁶⁰Fe half-life and neutron capture cross section measurements
 - $^7\mathrm{Be}$ in Big Bang Theory
- Half-life (⁵³Mn, ¹⁴⁶Sm, ³²Si, ¹⁴⁸Gd, ¹⁵⁴Dy, ¹⁵⁷Tb, ¹³⁷La, ⁹³Mo) and cross section (⁴⁴Ti, ⁵³Mn) measurements, most of them under the leadership of PSI completed, ongoing or planned
- We need a dedicated mass separation device for exotic radionuclides!

My thanks go to

• The Isotope and Target Chemistry research group and all members of LRC

- The PSI Hotlab crew
- The PSI ATEC group
- Colleagues from the Radioprotection Division
- all colleagues using samples and targets from PSI:
- n_TOF and ISOLDE at CERN
- SARAF
- Uni Frankfurt/KIT Karlsruhe
- ILL Grenoble
- ANU Canberra
- and many others

You for your attention