# Study of Liquid Bismuth as an alternative target for At211 production

*Theo BIGOURDAN (SUBATECH) on behalf of the REPARE collaboration 29/09/2022, INTDS 2022* 











## Summary

- Context
  - REPARE project
  - Astatine 211 production
- Capsule targets
  - Concept
  - Computation and results
- Fluid loop
  - Concept
  - Computation and results
- Windowless fluid loop
  - Concept
  - Risk assessment
- Conclusion



### **REPARE** Project

- Research and dEvelopements for the Production of innovAtive RadioElements
  - Astatine 211 ( $T_{1/2}$  = 7.2h): promising  $\alpha$ -emitter for **Targeted**  $\alpha$  **Therapy**
  - WP1: Inventory calculations and cross section measurements
  - WP2: High power solid target (see our other presentation in this conference)
  - WP3: High power liquid target
  - WP4: Rn211 generator
- Our objective are:
  - To study ways to increase At211 production through the <sup>209</sup>Bi(α,2n) reaction
  - To take advantage of the characteristics of GANIL's SPIRAL 2 beam (up to 80MeV and 3mAe of  $\alpha$ )
  - To take advantage of liquid bismuth properties to design a liquid target











# Beam properties for At211 production

- Nuclear reaction :  ${}^{209}Bi + \alpha \rightarrow {}^{211}At + 2n$
- Energy :
  - In the bismuth, energy needs to be between 28.6MeV and 20.7MeV to produce At211
  - Strictly <28.6MeV to avoid production of At210 (which decreases in Po210)
- Intensity :
  - Value to maximize to increase production
  - Limited by heat generation effects on the mechanical resistance in the structure
  - Gaussian distribution as a function of the radial coordinate, cut to  $2\sigma$  (which correspond to 90% of total power)



Production cross section for At211 and At210 as a function of energy



# CAPSULE CONCEPT



# Capsule target

- Concept
  - Metallic capsule containing bismuth
  - Cooled on the back plate
  - Bismuth melts under the beam heat generation ٠
- Opportunity:
  - Curved window to improve stress distribution



#### Existing capsule



Capsule with curved window side view - CFD Mesh





7

# Window optimization

Parameter ranges

| Target safety factor       | 1.1 +/- 0.1  |  |
|----------------------------|--------------|--|
| Radius range               | 10 to 20mm   |  |
| Window thickness<br>range  | 100 to 700µm |  |
| Curvature radius<br>range* | 50 to 80mm   |  |

\*For cylindrical window solution only.



=> Maximal efficient power/production with safety factor>1



# Capsule target – optimization results

| <b>C</b>             | Radius   | Window<br>thickness | Power        | Temperature | Safety<br>factor | Energy | Intensity | Production |
|----------------------|----------|---------------------|--------------|-------------|------------------|--------|-----------|------------|
| Case                 | mm       | μm                  | W            | К           | -                | MeV    | μAe       | GBq-1h     |
| Niobium<br>(flat)    | 15       | 700                 | 2450         | 1269        | 1.05             | 76.7   | 63.9      | 1.37       |
| Havar<br>(flat)      | 20       | 200                 | 2500         | 1145        | 1.09             | 47.5   | 105.3     | 2.26       |
| Niobium<br>(curved)  | 20       | 100                 | 4350         | 1322        | 1.06             | 37.7   | 230.9     | 4.95       |
| AISI 316<br>(curved) | 20       | 100                 | 2030         | 981         | 1.03             | 38.5   | 105.5     | 2.26       |
| Arronax<br>target    | Referenc | e (in service t     | target at th | clotron)    | 28.6             | 20     | 0.43      |            |



# FLUID LOOP CONCEPT



# LBE circuit concept

- Components:
  - Flowing Lead Bismuth Eutectic (55% Bi + 45% Pb)
    - Lower fusion T° (123°C)
    - Technically more mature than pure Bi
  - Temperature control
    - Heating resistances
    - Thermal exchanger
    - Window cooled by the LBE flow
  - At211 in line extraction (option)
    - ~600K for evaporation
  - EM pump for the flow
- LBE then acts as:
  - Target material
  - Coolant (for itself and for the window)
  - At211 carrier





## Window sizing

#### Limitations:

- Reduced production by 45% compared to pure Bi
- Sufficient LBE velocity to cool the window area => higher pump head pressure
- Window thick enough to withstand pump pressure

#### $\Rightarrow$ Production: 0.21 GBq/1h

| Window Diameter (mm)  | 13    |
|-----------------------|-------|
| Flow rate (kg/s)      | 2.5   |
| Window thickness (µm) | 500   |
| Power (W)             | 593.5 |
| Energy (MeV)          | 65.7  |
| Intensity (µAe)       | 18.1  |
| Production (GBq - 1h) | 0.21  |



CFD computation overview



# WINDOWLESS FLUID LOOP CONCEPT



### Windowless LBE circuit



Beam line contamination (LBE evaporation/ebullition)

|                          | Estimated<br>total<br>activity<br>[Bq] | Predicted<br>activity <sup>a</sup><br>[Bq] | % of<br>predicted<br>amount | % of<br>estimated<br>total<br>activity |
|--------------------------|----------------------------------------|--------------------------------------------|-----------------------------|----------------------------------------|
| Bulk                     | $295 \pm 18$                           | 8560                                       | $3.4 \pm 0.2$               | 7                                      |
| LBE/ cover gas interface | $1.2 \pm 0.1$                          |                                            | $(14 \pm 1) \times 10^{-3}$ | 0.03                                   |
| LBE/ steel interface     | $(37 \pm 20) \times 10^2$              |                                            | 43 ± 23                     | 93                                     |
| Absorber                 | $(38 \pm 2) \times 10^{-2}$            |                                            | $(44 \pm 2) \times 10^{-4}$ | 0.01                                   |
| Sum                      | $3997 \pm 2018$                        |                                            | $47 \pm 24$                 |                                        |

<sup>a</sup> Average of two calculations using different nuclear models.

Summary of 129I activity distribution over the different types of samples. (B. Hammer-Rotzler et al., Radiochemical determination of 129I and 36CI in MEGAPIE)

At211 losses through evaporation in the beam line

At211 losses through fixation to metallic structures

| Phosphore<br>*5 1011.8 15<br>*2 P 5<br>*3 (Nel 3s <sup>2</sup> 3p <sup>3</sup><br>30,97376200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Soufre<br>999,6<br>2,58<br>16<br>2,58<br>16<br>2,58<br>16<br>2<br>2<br>(Ne] 3s <sup>2</sup> 3p <sup>4</sup><br>32,0675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chlore<br><sup>1</sup> 251,2<br><sup>1</sup> 3,16<br><sup>1</sup> 3,16<br><sup>1</sup> 1251,2<br><sup>1</sup> 17<br><sup>1</sup> 3,16<br><sup>1</sup> 2<br><sup>1</sup> 3,16<br><sup>1</sup> 2<br><sup>1</sup> 3,16<br><sup>1</sup> | Argon<br>1 520,6 18<br>Ar<br>[Ne] 35 <sup>2</sup> 3p <sup>4</sup><br>39,948 ①                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arsenic<br>+5 947.0 33<br>+2 2,18 33<br>+2 AS 18<br>+2 AS 18<br>+2<br>-3 (Ar) 3d <sup>10</sup> 46 <sup>2</sup> 46 <sup>3</sup><br>-74,921595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sélénium<br>+6 941,0 34<br>+2 Se 18<br>+2 Se 8<br>+2 Re 8<br>-2 (Ar) 3d <sup>10</sup> 45 <sup>2</sup> 4p <sup>4</sup><br>-2 (Ar) 3d <sup>10</sup> 4p <sup>4</sup><br>-2 (Ar) 3d <sup>10</sup> 4p <sup>4</sup><br>-2 (Ar) 4 | Brome<br>+7 1139,9 35<br>+5 2,96<br>-1 Br 18<br>(Ard 3d <sup>100</sup> 45 <sup>2</sup> 4p <sup>5</sup> 2<br>79,904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Krypton<br>1 350.8 36<br>1 300 45 <sup>2</sup> 4p <sup>6</sup><br>83,798 ©                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} \textbf{Antimoine} \\ & \overset{+5}{\overset{+3}{}} & \overset{+3}{}_{2,05} & \textbf{51} \\ & \overset{+2}{} & \textbf{5b} & \overset{+8}{} \\ & \overset{+1}{} & \textbf{5b} & \overset{+8}{} \\ & \overset{+1}{} & \overset{+1}{} & \overset{+8}{} \\ & \overset{+8}{} \\ & \overset{+1}{} & \overset{+8}{} \\ & \overset{+1}{} & \overset{+8}{} \\ & \overset{+8}{\phantom$ | Tellure<br><sup>6</sup> 893 52<br><sup>1</sup> 2,10 52<br><sup>1</sup> 4<br><sup>1</sup> 2,10 18<br><sup>1</sup> 8<br><sup>1</sup> 2<br><sup>1</sup> 2<br><sup>1</sup> 2<br><sup>1</sup> 127,60 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10000<br>1008,4<br>2,66<br>53<br>7<br>4<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Xénon<br>*8 1170,4 54<br>*2 2,60 54<br>*2 Xee 18<br>(Kr] 4d <sup>10</sup> 5s <sup>2</sup> 5p <sup>6</sup><br>131,293 ®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bismuth<br>+5 703.0 83 5<br>+3 2.02 83 8<br>-3 Bi 32<br>-3 Bi 32                                                                                                                                                                                                                                                                                                           | Polonium<br>*6 812,1 84,6<br>*4 2,00 84,8<br>*2 Po 32<br>(Xe) 4f*5d*65*6p <sup>2</sup><br>[209]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Astate<br><sup>7</sup> 890,0<br>890,0<br>85,7<br>32,1<br>At<br>18<br>xel 4f**5d*065*66 <sup>2</sup><br>[210]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Radon<br><sup>46</sup> / <sub>2</sub> <sup>1037,0</sup> 86 <sup>8</sup> / <sub>18</sub><br><b>Rn</b> <sup>32</sup><br><sup>32</sup> / <sub>18</sub><br><sup>32</sup> / <sub></sub> |
| Moscovium<br>115<br>115<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Livermorium<br>116<br>Lv<br>18<br>(Rn) 51" 64" 75 <sup>2</sup> 75 <sup>4</sup><br>[293]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tennesse<br>1173<br>1173<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Oganesson<br>118 18<br>Og<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



Evaporation of iodine from very dilute solution in LBE (Handbook on LBE Alloy and Lead Properties, Materials Compatibility, Thermalhydraulics and Technologies)

14

#### [1] NEA, OECD, Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies, 2015.

### Beam line contamination

- Evaporation rate
  - $R_m = \sqrt{\frac{M}{2\pi RT}} P_s$
  - $Rm(885K) = 1.5 \cdot 10^{-5} g.cm^{-2}.s^{-1*}$
- $\Rightarrow$  Capability to maintain low pressure
- Vapor pressure
  - $P_{s(LBE)}[Pa] = 1.22 * 10^{10} * \exp\left(-\frac{22552}{T[K]}\right)$
  - T<sub>boiling</sub> (0.1 Pa) = 885K
- $\Rightarrow$  Maximal production: 11.5 GBq / 1h (14kW, 979µAe)



• Q: pressure flow (Pa.m<sup>3</sup>.s<sup>-1</sup>)

- Beam line contamination (LBE evaporation/ebullition)
  - Bibliographic study and computation are **optimistic** ٠
  - Mitigation : lower tolerable T°
- At211 losses through evaporation in the beam line

At211 losses through fixation to metallic structures

| Phosphore<br>*5 1011.8 15<br>*2 P 5<br>*3 (Ne) 35' 35'<br>30,97376200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Soufre<br>*6 999.6 16<br>*4 2,58 16<br>*2 S.8 6<br>*2 S.8 6<br>*2 S.8 6<br>*3 S 6<br>*2 S.8 16<br>*3 S 6<br>*2 S.8 16<br>*3 S 6<br>*4 3 S 6<br>*2 S 8 16<br>*4 3 S 7<br>*2 S 8 16<br>*4 5 S 7<br>*2 S 8 16<br>*4 5 S 7<br>*2 S 8 16<br>*2 S 8 16<br>* S | Chlore<br><sup>*7</sup> / <sub>5</sub> 1251,2 17<br><sup>*4</sup> / <sub>5</sub> 215<br><sup>*4</sup> / <sub>5</sub> 215<br><sup>*7</sup> / <sub>5</sub> 1251,2 17<br><sup>*4</sup> / <sub>5</sub> 215<br><sup>*7</sup> / <sub>2</sub> 1251,2 17<br><sup>*8</sup> / <sub>2</sub> 35,4515 | Argon<br>1 520,6 18<br>Ar<br>[Net] 3s <sup>2</sup> 3p <sup>4</sup><br>39,948 ①                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arsenic<br>+5 947.0 33<br>+2 2,18 33<br>+2 41 AS 18<br>-1 -2<br>-3 (Ar) 3d <sup>10</sup> ds <sup>2</sup> ds <sup>2</sup> ds <sup>2</sup><br>74,921595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sélénium<br>+6 941.0 34<br>+3 2,55 34<br>+3 Se 18<br>-2 [Ar] 3d% 45 <sup>2</sup> 4p <sup>4</sup><br>78,971 ®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Brome<br>+7 1139,9 35<br>+5 2,96<br>*1 Br 18<br>(Art] 3d <sup>10</sup> 45 <sup>2</sup> 4p <sup>5</sup><br>79,904                                                                                                                                                                         | Krypton<br><sup>12</sup> 1350.8 <b>36</b><br><sup>13</sup> 3,00 <b>36</b><br>Kr <sup>8</sup><br><sup>8</sup> 8<br><sup>8</sup> 4 <sup>1</sup> 3d <sup>10</sup> 45 <sup>2</sup> 4p <sup>6</sup> <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Antimoine<br>*5 834.0 51<br>*2 56<br>*2 56<br>*2 56<br>*3 (K) 4d <sup>19</sup> 59 <sup>3</sup> 59 <sup>3</sup><br>121,760 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tellure<br>*6 869.3 52<br>*3 2,10 52<br>*4 2,10 52<br>*4 18<br>*2 16<br>*4 18<br>*2 18<br>*4 127,60 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10000<br>2 1008.4 53<br>4 I 18<br>1 Kr(1 4d <sup>10</sup> 5s <sup>2</sup> 5p <sup>5</sup><br>126,90447                                                                                                                                                                                   | Xénon<br>** 1170,4 54<br>** 2,60 54<br>** Xe **<br>(Kr] 4d <sup>10</sup> 5s <sup>2</sup> 5p <sup>4</sup><br>131,293 ®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bismuth<br>*4 703.0 83 5<br>*3 2.02 83 8<br>*3 2.02 83<br>*3 2.02 *3 2.02 *3 2.02 *3 2.02 *3 2.02 *3 | Polonium<br>*5 812.1 84.6<br>*4 2.00 84.8<br>*2 Po 18<br>18<br>[Xe] 4f**5d*05*6p <sup>2</sup><br>[209]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Astate<br>2 890,0 85 7<br>2 2,0 85 7<br>3 2,0 85 7<br>3 2,0 85<br>1 8<br>3 2<br>3 2<br>3 2<br>3 2<br>3 2<br>3 2<br>3 2<br>3 2                                                                                                                                                            | Radon<br><sup>45</sup> / <sub>2</sub> 1037,0 <b>86</b> ,8<br><b>Rn</b><br><sup>32</sup> / <sub>18</sub><br><sup>32</sup> / <sub>18</sub><br><sup>33</sup> / <sub>18</sub><br><sup>33</sup> / <sub>18</sub><br><sup>35</sup> / <sub>1</sub> |
| Moscovium<br>115<br>Mcc <sup>13</sup><br>(Rnj 51"46d <sup>19</sup> 7s <sup>2</sup> 7p <sup>4</sup><br>[289]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Livermorium<br>116<br>Lv<br>(Rn) 51" 6d" 7s² 7p <sup>2</sup><br>[293]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tennesse<br>, 117,32<br>Ts,32<br>Ts,32<br>8<br>(Rn) 514 6d197527p <sup>2</sup> )<br>[294]                                                                                                                                                                                                | Oganesson<br>118 13<br>Og<br>(Rn) 5f* 6d* 7s 7 27<br>[294]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                          | Estimated<br>total<br>activity<br>[Bq] | Predicted<br>activity <sup>a</sup><br>[Bq] | % of<br>predicted<br>amount | % of<br>estimated<br>total<br>activity |
|--------------------------|----------------------------------------|--------------------------------------------|-----------------------------|----------------------------------------|
| Bulk                     | $295 \pm 18$                           | 8560                                       | $3.4 \pm 0.2$               | 7                                      |
| LBE/ cover gas interface | $1.2 \pm 0.1$                          |                                            | $(14 \pm 1) \times 10^{-3}$ | 0.03                                   |
| LBE/ steel interface     | $(37 \pm 20) \times 10^2$              |                                            | $43 \pm 23$                 | 93                                     |
| Absorber                 | $(38 \pm 2) \times 10^{-2}$            |                                            | $(44 \pm 2) \times 10^{-4}$ | 0.01                                   |
| Sum                      | 3997 ± 2018                            |                                            | $47 \pm 24$                 |                                        |

<sup>a</sup> Average of two calculations using different nuclear models.

Summary of 129I activity distribution over the different types of samples. (B. Hammer-Rotzler et al., Radiochemical determination of 129I and 36CI in MEGAPIE)



Evaporation of iodine from very dilute solution in LBE (Handbook on LBE Alloy and Lead Properties, Materials Compatibility, Thermalhydraulics and Technologies)

27/10/2022

16

- **Beam line contamination** (LBE evaporation/ebullition)
  - Bibliographic study and computation are **optimistic**
  - Mitigation : lower tolerable T°
- At211 losses through evaporation in the beam line
  - Bibliographic study and computation are somehow **optimistic**, but they are based on iodine data
  - Mitigation : lower tolerable T°
- At211 losses through fixation to metallic structures

|                         | Estimated<br>total<br>activity<br>[Bq] | Predicted<br>activity <sup>a</sup><br>[Bq] | % of<br>predicted<br>amount | % of<br>estimated<br>total<br>activity |
|-------------------------|----------------------------------------|--------------------------------------------|-----------------------------|----------------------------------------|
| Bulk                    | $295 \pm 18$                           | 8560                                       | $3.4 \pm 0.2$               | 7                                      |
| LBE/cover gas interface | $1.2 \pm 0.1$                          |                                            | $(14 \pm 1) \times 10^{-3}$ | 0.03                                   |
| LBE/ steel interface    | $(37 \pm 20) \times 10^2$              |                                            | 43 ± 23                     | 93                                     |
| Absorber                | $(38 \pm 2) \times 10^{-2}$            |                                            | $(44 \pm 2) \times 10^{-4}$ | 0.01                                   |
| Sum                     | $3997 \pm 2018$                        |                                            | $47 \pm 24$                 |                                        |

<sup>a</sup> Average of two calculations using different nuclear models.

Summary of 129I activity distribution over the different types of samples. (B. Hammer-Rotzler et al., Radiochemical determination of 129I and 36Cl in MEGAPIE)



Evaporation of iodine from very dilute solution in LBE (Handbook on LBE Alloy and Lead Properties, Materials Compatibility, Thermalhydraulics and Technologies) 17

- Beam line contamination (LBE evaporation/ebullition)
  - Bibliographic study and computation are optimistic
  - Mitigation : lower tolerable T°
- At211 losses through evaporation in the beam line
  - Bibliographic study and computation are somehow **optimistic**, but they are based on iodine data
  - Mitigation : lower tolerable T°
- At211 losses through fixation to metallic structures
  - Experts are **pessimistic**
  - lodine bibliography is **pessimistic**
  - Mitigation: ?

#### $\Rightarrow$ Experiment planned to investigate this last issue

|                          | Estimated<br>total<br>activity<br>[Bq] | Predicted<br>activity <sup>a</sup><br>[Bq] | % of<br>predicted<br>amount | % of<br>estimated<br>total<br>activity |
|--------------------------|----------------------------------------|--------------------------------------------|-----------------------------|----------------------------------------|
| Bulk                     | $295 \pm 18$                           | 8560                                       | $3.4 \pm 0.2$               | 7                                      |
| LBE/ cover gas interface | $1.2\pm0.1$                            |                                            | $(14 \pm 1) \times 10^{-3}$ | 0.03                                   |
| LBE/ steel interface     | $(37 \pm 20) \times 10^2$              |                                            | $43 \pm 23$                 | 93                                     |
| Absorber                 | $(38 \pm 2) \times 10^{-2}$            |                                            | $(44 \pm 2) \times 10^{-4}$ | 0.01                                   |
| Sum                      | 3997 ± 2018                            |                                            | 47 ± 24                     |                                        |

<sup>a</sup> Average of two calculations using different nuclear models.

Summary of 129I activity distribution over the different types of samples. (B. Hammer-Rotzler et al., Radiochemical determination of 129I and 36CI in MEGAPIE)



Evaporation of iodine from very dilute solution in LBE (Handbook on LBE Alloy and Lead Properties, Materials Compatibility, Thermalhydraulics and Technologies) 18





| Criteria     | Bismuth Capsule                                               | LBE loop                                                     | Windowless LBE loop                                            | ARRONAX                              |
|--------------|---------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------|
|              | **                                                            | *                                                            | * * *                                                          | *                                    |
| Production   | 4.9 GBq - 1h                                                  | 0.21 GBq - 1h                                                | 11.5 GBq - 1h<br>(pending losses evaluation)                   | ~0.43 GBq – 1h TBC                   |
|              | * * *                                                         | **                                                           | *                                                              | ****                                 |
| Maturity     | In service for other targets. Curved window not demonstrated. | Feedback from MEGAPIE.                                       | Lack of experience on liquid LBE in the vacuum.                | In service.                          |
|              | ***                                                           | **                                                           | *                                                              | * * *                                |
| Exploitation | Manual extraction, easier transport.                          | In line extraction as an option.<br>Important volume of LBE. | In line extraction. Important volume of LBE. Beam line losses. | Manual extraction, easier transport. |
|              | ***                                                           | **                                                           | *                                                              | ***                                  |
| Cost         | Simpler system.                                               | Pump, pipe, exchanger                                        | Pump, pipe, exchanger, beam line<br>modifications              | Simpler system.                      |
|              | ***                                                           | **                                                           | *                                                              | * * * *                              |
| Integration  | Simpler system.                                               | Pump, pipe, exchanger                                        | Pump, pipe, exchanger, beam line<br>modifications              | Simpler system. 19                   |



# Conclusion and way forward

- Physical limits to At211 production through liquid bismuth target
  - Windows strongly limit the production rate: beam absorption and mechanical stress
  - Window removal compromises At211 retrieval
  - Bismuth **metallic loops** compromise At211 retrieval (?)
- High power liquid target dedicated installation?
  - Current concepts are showing physical limits
  - Only 30% (loop) to 2% (flat capsule) of SPIRAL II's 3mAe are used
  - Smaller local production units more adequate?
- Small scale **experiment** (capsule) to:
  - Study At211 migration risks
  - Crosscheck computation
  - Demonstrate capsule concept's feasibility

| Criteria     | Bismuth<br>Capsule | LBE loop | Windowless<br>LBE loop | ARRONAX |
|--------------|--------------------|----------|------------------------|---------|
| Production   | *                  | *        | ***                    | *       |
| Maturity     | ***                | **       | *                      | ****    |
| Exploitation | ***                | **       | *                      | ***     |
| Cost         | * * * *            | **       | *                      | ****    |
| Integration  | ****               | **       | *                      | ****    |



### Schematic view of the problematic



#### [1] NEA, OECD, Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies, 2015.

## Beam line contamination

- Evaporation rate
  - $R_m = \sqrt{\frac{M}{2\pi RT}} P_s$
  - $Rm(885K) = 1.5 \cdot 10^{-5} g.cm^{-2}.s^{-1*}$
- $\Rightarrow$  Capability to maintain low pressure
- Vapor pressure
  - $P_{s(LBE)}[Pa] = 1.22 * 10^{10} * \exp\left(-\frac{22552}{T[K]}\right)$
  - T<sub>boiling</sub> (0.1 Pa) = 885K
- $\Rightarrow$  Maximal production: 11.5 GBq / 1h (14kW, 979µAe)



#### At211 losses through evaporation





[1] NEA, OECD, Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies, 2015.

cm<sup>2</sup>

500

Beam line surface

### Production order of magnitude

Two main references were considered to assess the efficiency of the targets we considered.

- Current production assessment at ARRONAX
  - 0.43 GBq/1h
  - Intensity limited to 20µAe by the energy degrader used to go from 68MeV to 28.6MeV
- Computations
  - Taking optimistic hypotheses, regardless of technical feasibility
  - Ideal solid target production: 4.4 GBq/1h
    - T° allowable: 271°C (bismuth fusion)
  - Ideal liquid target production: 15.3 GBq/1h
    - T° allowable: 600°C (engineering judgement)
- $\Rightarrow$  Significant benefits could be achieved







Heat generation of the ideal target model cross-section A convection boundary condition (25°C ; 25kW.m<sup>-1</sup>.K<sup>-1</sup>) is applied on the back plate, represented here by the dashed line.

# Window optimization

- Window radius optimization:
  - **↗** Radius ⇒ **↗** stress
  - ¬ Radius ⇒ ↘ temperature ⇒ ¬ mechanical strength

(considering a constant heat generation, the beam is distributed through a bigger area)

- Window thickness optimization:
  - 7 thickness  $\Rightarrow$  3 stress

(to keep the same production, it is needed to increase initial energy to reach the bismuth at the adequate energy)

- $\Rightarrow$  No obvious optimum
- $\Rightarrow$  Run the optimization for various materials



|     | Target safety<br>factor | Power range   | Radius range | Window<br>thickness range | Curvature radius<br>range* |
|-----|-------------------------|---------------|--------------|---------------------------|----------------------------|
|     | 1.1 +/- 0.1             | 1000 to 8000W | 10 to 20mm   | 100 to 700µm              | 50 to 80mm                 |
| INT | DS                      | 26            |              |                           |                            |