$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

Novel solid target and irradiation methods for theranostic radioisotope production at the Bern medical cyclotron

Gaia Dellepiane,

P. Casolaro, A. Gottstein, I. Mateu, P. Scampoli^{*}, S. Braccini

Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern, Switzerland *Also at Department of Physics «Ettore Pancini», University of Napoli Federico II, Complesso Universitario di Monte S. Angelo, Italy

Theranostics in nuclear medicine

UNIVERSITÄT BERN

 $\boldsymbol{u}^{\scriptscriptstyle b}$

The Bern medical cyclotron laboratory

P

UNIVERSITÄT BERN

 $\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

IBA 18/18 HC cyclotron

SWanisotopen

- Two H⁻ ion sources
- High current (max 150 μA)
- 8 out ports:
 - 6 ¹⁸F liquid targets [industrial production]
 - Solid Target Station (STS) [research]
 - Beam Transfer Line (BTL) [research]

The Solid Target Station (STS)

IBA Nirta Solid Compact

<u>_ A</u> Target area ⊢_A

Solid targets

Target disk

Pressed powder pellets

 $u^{\scriptscriptstyle \flat}$

UNIVERSITÄT BERN

UNIVERSITÄT BERN The Novel Coin Target by LHEP

Covering lid: degradation of the impinging energy to the desired value

Containing cup: complete stopping of the proton beam

The Solid Target Station (STS)

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle \flat}$

STTS by TEMA Sinergie

Hot-cell in radiopharmacy

BTL bunker

Receiving station in the BTL bunker

u^{\flat} The Solid Target Station (STS)

UNIVERSITÄT BERN

Ø 6 mm pellet

u^{\flat} The Automatic Focalization System (AFS)

Tests in the BTL: focusing with the AFS

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Before AFS

P.D. Häffner et al, Appl. Sci. 2021, 11(6), 2452

AFS system + STS

 $u^{\scriptscriptstyle \flat}$

Beam energy measurement: special coin for the STS

b

Ú

u^{\flat} Cross-section measurements

UNIVERSITÄT BERN

Target for cross section measurement: (a) empty aluminum disc (24 mm diameter, 2 mm thick); (b) deposition procedure. (c) pocket filled; (d) aluminum disc covered with a thin aluminum foil

Flat beam procedure

Adapted from T.S. Carzaniga et al, Appl. Radiat. Isot. 2017, 129, 96

u^{\flat} Cross section-measurements

UNIVERSITÄT BERN

Measured cross sections:

⁴³Sc, ⁴⁴Sc, ⁴⁷Sc, ⁴⁸V, ⁶¹Cu, ⁶⁴Cu, ⁶⁷Cu, ⁶⁷Ga, ⁶⁸Ga, ¹⁵⁵Tb, ¹⁶⁵Er, ¹⁶⁵Tm, ¹⁶⁷Tm, ¹⁶⁷Tm (and impurities)

u^{b} Cross sections and radionuclidic purity: the case of ¹⁵⁵Tb

UNIVERSITÄT BERN

Terbium: the Swiss Army Knife

Cross sections and radionuclidic purity: the case of ¹⁵⁵Tb

UNIVERSITÄT BERN

U

b

G. Dellepiane et al, Appl. Radiat. Isot. 2022, 184, 110175 C. Favaretto et al, EJNMMI radiopharm. chem. 2021, 6, 37

Cross sections and radionuclidic purity: the case of ¹⁵⁵Tb

 $u^{\scriptscriptstyle b}$

First results in radioisotope production

Radiosotope	Reaction	Target material	Mass [mg]	Υ [GBq/μAh]
⁴⁴ Sc ^[1,2]	(p,n)	^{enr-44} CaO pellet	~30	0.6
⁴⁷ Sc ^[3]	(p,α)	^{enr-50} Ti pellet	~35	0.001
⁶¹ Cu ^[4]	(p,α)	^{enr-64} Zn pellet	~40	0.08
⁶⁴ Cu ^[5]	(p,n)	enr-64Ni deposition	~63	0.13
	(p,α)	^{enr-67} Zn pellet	~59	0.016
⁶⁷ Cu	(p,α)	^{enr-70} Zn pellet	~34	0.001
⁶⁸ Ga ^[6]	(p,n)	^{enr-68} Zn pellet	~100	6
¹⁵⁵ Tb ^[7,8]	(p,n)	^{enr-155} Gd ₂ O ₃ pellet	~40	0.004
	(p,2n)	^{enr-156} Gd ₂ O ₃ pellet	~40	0.014
¹⁶⁵ Er	(p,n)	^{nat} Ho metal disk	~24	0.015
¹⁶⁵ Tm	(p,2n)	^{enr-166} Er ₂ O ₃ pellet	~59	0.07
¹⁶⁷ Tm	(p,n)	^{enr-167} Er ₂ O ₃ pellet	~38	0.002

(1) N. P. van der Meulen et al., *Molecules* 2020, 25(20), 4706.

(2) T. S. Carzaniga et al, Appl. Radiat. Isot. 2019, 143, 18-23.

(3) <u>G. Dellepiane</u> et al, *Appl. Radiat. Isot* **2022**, *1*89, 110428.

(4) <u>G. Dellepiane</u> et al, Appl. Radiat. Isot 2022, 190, 110466..

G. Dellepiane - INTDS2022

b

UNIVERSITÄT BERN

Ú

(5) G. Dellepiane et al, Under review at Appl. Radiat Isot 2022.

(6) S. Braccini et al, Appl. Radiat. Isot. 2022, 186, 110252.

(7) <u>G. Dellepiane</u> et al, Appl. Radiat. Isot. 2022, 184, 110175.

(8) C. Favaretto et al, EJNMMI radiopharm. chem. 2021, 6, 37.

Conclusions and outlook

- Compact medical cyclotrons: tools of choice for radioisotope production in a hospital-based environment
- New instruments and methods to optimise radioisotope production:
 - Beam monitoring detectors
 - Novel target coin to irradiate solid materials
 - Cross-section measurement procedure
 - Beam energy measurement procedure
- First promising results on

⁴³Sc, ⁴⁴Sc, ⁴⁷Sc, ⁶¹Cu, ⁶⁴Cu, ⁶⁷Cu, ⁶⁸Ga, ¹⁵⁵Tb, ¹⁶⁵Er, ¹⁶⁵Tm, ¹⁶⁷Tm

Development and testing of a novel compact Automatic Focalization System

b

UNIVERSITÄT

UNIVERSITÄT BERN

Thank you all for your attention!

gaia.dellepiane@lhep.unibe.ch