

Dr. Nadine M. Chiera :: Laboratory of Radiochemistry :: Paul Scherrer Institute

Production of PbSe targets for neutron capture cross section studies

INTDS 2020 :: 30.09.2022

Overview on the project

Objective

Measurement of the cross section of the ⁷⁹Se(n, γ) neutron capture reaction

Motivation

❑ Nuclear safety / nuclear waste disposal
 ⁷⁹Se is one of the seven long-lived fission products
 Risk of migration from deep geological disposal facilities into the biosphere
 → Transmutation studies of ⁷⁹Se into the stable isotope ⁸⁰Se
 ❑ Astrophysics
 ⁷⁹Se is a branching point in the slow neutron capture process (s-process)

ightarrow Essential information on the s-process nucleosynthesis

Overview on the project

Methods

□ Time-of-flight (TOF) method

Direct cross section measurement of ⁷⁹Se(n,y)⁸⁰Se @n_TOF facility, CERN

Surrogate method

Study of the ⁷⁸Se(¹⁸O, ¹⁶Oγ)⁸⁰Se (2n) transfer reaction as a surrogate of ⁷⁹Se(n,y)⁸⁰Se @Piave-Alti INFN, Legnaro

Targets needed

- □ Enriched ⁷⁹Se target for the TOF method
- □ Enriched ⁷⁸Se for the surrogate method

Characteristics of Se

Se 78	Selenium 78
23.77	stable nuclide
σ 0.38 + 0.05	23.78% natural abundance

Se 79 3.9 m 4.8·10⁵ y γ 96 β⁻ 0.2 e no γ β⁻ g

Selenium 79

produced by high-flux thermal neutrons irradiation of ⁷⁸Se or by separation of spent nuclear fuel

Problem

Selenium has a low melting point (217 °C), and is a poor heat conductor

- □ Localized melting at the beam spot
- □ Safety concerns during irradiation

Solution

Synthesis of a selenium compound

- High melting point
- ❑ No interference with cross-section studies

Pb⁷⁹Se target for the TOF method Pb⁷⁸Se target for the surrogate method

Synthesis of PbSe

Reaction of Pb and Se (in slight excess) in an evacuated quartz tube @1250 °C for 24 h

Phase diagram from: Lin J.C., et al., J. Phase Equilib., 17 (1996), pp. 253-260

Purification of PbSe

Removal of Se in excess by grinding the synthesized PbSe, and placing it in a quartz tube heated up to 450°C under a He gas flow (25 ml min⁻¹) for 2 hours.

Characterization of the synthesized PbSe: XRD

Lattice constant = 6.12 Å

Target for the surrogate method

PbSe target for the surrogate method

Physical vapor deposition with the thermal evaporation station Univex 450 (Leybold vacuum) equipped with a **mechanical shutter** and a **quartz crystal microbalance**.

- Operational vacuum: 10⁻⁵ mbar
- Crucible: Ta boat coated with Al₂O₃
- Applied current: 4.5 A
- Temperature (Type-K thermocouple): 220 °C
- \circ Evaporation rate: 0.2 nm s⁻¹.
- Thickness deposited layer: 400 nm

Characterization of PbSe layer: XRF and SEM

PbSe deposited material (XRF)

	wt%	wt% error	Literature*
Pb(L)	74.5	1.6	74.3
Se(K)	25.5	0.5	25.7

*K. Ravi et. Al., Conf. Ser.: Mater. Sci. Eng. 932, 2020, 0123133.

Characterization of PbSe layer: EDX

Distribution of Pb in deposited layer

Composition of deposited PbSe layer (EDX)

	at%	Literature*
Pb	52.2	52.4
Se	47.7	47.6

*K. Ravi et. Al., Conf. Ser.: Mater. Sci. Eng. 932, 2020, 0123133.

Target for the TOF method

PbSe target for the TOF method

□ Synthesis of 4.11 g of Pb⁷⁸Se

 \Box Irradiation for 51 days (total neutron fluence: 5 × 10²¹ cm⁻²) @ILL high-flux reactor

Se 76	Se 77	Se 78	Se 79 .9 m 4.8·10 ⁵ y	Se 80	Se 8	81 Se 8	82 Se	22.4 m
σ 22+63 γ 162	2 σ 42 σ 0	.38+0.05	96 β ⁻ 0.2 - no γ 3- g	σ 0.05+0.54	γ 103 β ⁻ e- γ β ⁻ 2	1.08-1 - 1.6 (276; 2 β- σ 0.039+	0²⁰ y β ⁻ 3.9 γ 1031 357;98 0.0052 674	β ⁻ 0.9; ; γ 357; 88 510; 225
Isotope content								
	Isotope	Se-78	Se-76	Se-77	Se-80	Se-82		
	Enrichment, (%)	99.30	0.01	0.03	0.64	0.02		
	Chemical admixture							
	Element	AI	Na	Ca	Mg	Fe		
	Content (ppm)	< 20	< 20	< 20	< 42	< 75		
	Element	Be	Sc	Cu	Cr	As		
	Content (ppm)	< 0.2	< 6	< 2	< 10	< 3		
	Element	В	Mn	Ni	Si	Zn		
	Content (ppm)	< 5	< 1	< 2	< 5	40 ± 35		
	Element	Ti						
	Content (ppm)	< 4						

PbSe target for the TOF method

Characterization of the irradiated material @PSI, via γ-spectrometry.

ightarrow Calculated amount of ⁷⁹Se produced: ~3 mg \leftarrow

Isotope	Half-life	Activity (MBq)	Mass (ng)	Activity (MBq)
		t = 1 y	t = 1 y	t = 5 y
⁷⁵ Se	119.79 d	338	627	0.07
^{110m} Ag	249.76 d	29	165	0.51
⁶⁵ Zn	244.15 d	1.89	6.2	0.03
⁶⁰ Co	5.27 y	2.77	66	1.64

Retrieval of Se from PbSe

Retrieval of Se from PbSe

□ Efficiency of separation tested with Pb⁷⁵Se

□ Irradiation of 0.04 g of PbSe with thermal neutrons @SINQ

□ Irradiation time: 1 hour; cooling time: 24 hours

Recovery of Se from PbSe

Efficiency of separated Se: γ-spectroscopy

Efficiency of the separation process: ~70%

Purity of separated Se: ICP-OES

□ The separated Se was dissolved in aqua regia

 \Box Aliquots of 0.01 ml were diluted with 2% HNO₃ (final volume = 14 ml)

Sample	Wavelength (nm)	Concentration (ppm)	SD (ppm)
Se-I	Pb (220.353)	0.003	0.001
	Pb (283.305)	0.005	0.001
	Se (196.026)	3.789	0.040
	Se (203.985)	3.818	0.042
Se-II	Pb (220.353)	0.003	0.001
	Pb (283.305)	0.004	0.001
	Se (196.026)	4.582	0.271
	Se (203.985)	4.606	0.271

Purity of separated Se: ~99%

□ Successfully applied a method for the **synthesis of PbSe**

□ Production of **Pb⁷⁹Se** at ILL (**3 mg of ⁷⁹Se**) for TOF method

□ Deposition of thin (400 nm) and homogeneous PbSe layers as targets for surrogate method

Developed a method for the **recovery of Se (99% purity)** from PbSe, with an **efficiency of 70%**.

□ The method can also be used to **purify Se prior to the synthesis of PbSe**

□ Nadine M. Chiera et al., *Nucl. Instrum. Methods Phys. Res. A*, 1029 (2022)

Thank you for your kind attention

Collaborators:

- Javier Balibrea-Correa
- Ivan Danilov
- Cesar Domingo-Pardo
- Ulli Köster
 Jorge Lerendegui-Marco
 Emilio A. Maugeri
 Dorothea Schumann
 Mario Veicht
 Ivan Zivadinovic

Special thanks to:

Stephan Heinitz
 Ekaterina Pomjakushina
 Patrick Steinegger
 Alexander Vögele