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Flavour anomalies in semileptonic B-decays:

b — ctv b — sCt
7/ 11 universality
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Combined explanation calls for NP coupled dominantly to 3rd generation

General prediction: huge enhancement of b — sz transitions!
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Constraining NP in taus...from muons?

Probing b — stt directly is experimentally very challenging:

Bt - Ktrtr~ %CXP <225-1073 [BaBar] By =12 1077

B, — tt1” Bexp < 0.8 - 1073 hen B =173 - 1077
Lots of data available in b — supu.

Can we probe b — st7 via its imprint on the BY — K "~ dimuon

spectrum?
b S
e rr ...a solid description of SM spectrum shape in
) the full g2 range is needed!
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EFT description of b — s£¢

Weak effective Lagrangian: P o= ﬁ A% 2 Ciu) O;,
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o < O; = " 6eﬂ2 my, (50, Prb) F"*
v  O01=(y,PLa)Gr'Pb) 0f = (3%,Prg")G y"P.b%)

NP M - M+ €M and/or new operators

Local (short distance)

N 5 S Two ingredients needed:
Os 10 X; o8 o CPM(u)

e I~ b ;/n « form factors f(¢*) for B — K
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Non-local effects: the charm loop

Non-local (long distance) effects arise via 4-quark + chromomagnetic operator.

Included via
Co — C$M(g*) = Cy + Y(g*)

'Semilperturbative approach valid at low g*:

“charm loop”
Pert. contribution + expansion in Aj.,/(g° — 4m)
[Khodjamirian et al., 1212.0234]
o, 7\5 cannot be applied in the full kinematical range :
c c
A K
¥ 3
> " ¢
‘.k /"“Y
PR
q*> > my, g* > 4m?

...Intrinsically non perturbative objects!

Goal: model long-distance effects at experiments, in the entire spectrum.
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Why working towards a better parametrisation?

e access long-distance info unaccessible from first principles [e.g. phases ]

e extract reliable short-distance info [hence NP!]
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Charm loops: resonances

For the charm we employ a dispersive approach, with subtraction in q2 =0:

2 o0
q ds p.s)
AY (g% = — J

7l s (5—g?

We include single- and two-particle contributions:

Pee(8) & pei (5) + piz ()

Charmonium resonances: . 5
BW, subtracted In g© = 0!

. .
>, AYE(q?) = vae AfeS(cﬁ)
>R

V= Jly, yw(2S),p(3770) , y(4040), w(4160), y(4415)
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Two-particle cc states:
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Charm loops: two-particle states

Two-particle cc states:

5 s [ d5 pyy(5)
AVE@) = T AR AR == | SO
|44

JTSO

VV' = DD, D*D*, DD*

...estimate from helicity arguments!

=) oV Brdm,ls) PO =y1-1

pyyls) = Im

Keeping |leading partial wave only:  Ppp ™ ,33, Pp+p* ™~ ,53 , Pppx ~ P
Constrain fit using perturbative charm loop:
Y2 + YZ(q®) = Y (gP) g% < 4m?

Up contribution is CKM suppressed: only resonances included.
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Our proposal

We parametrise hadronic long-distance contributions as:

Y(g?) =Yy + Y,

lighld?) + AY: (%) + MY (g7)

The ¢°- dependence is fixed by the position of one- and two-particle thresholds.

Magnitudes and phases are fit parameters (12)!

What is new?

e inclusion of two-particle intermediate cc states

e charm contribution subtracted in g% = 0: AY™(0) = 0, remainder in ¥,

e theory constraints from perturbative results
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Tau loops in b — suu

The tau loop also enters as a g°-dependent shift in C/(g):

b P .

te T y2P(g?) = — —G [hs (m?,q%) - 37 (m?, qz)]
3

A

Non-local effect, distinct from mixing between Og‘ and Og.
Allows for model independent extraction of Cg!

Characteristic imprint on B¥ - K*u*u~ spectrum:

¢ s-wave, hence cusp at g% = 4m?

o alter g°> dependence above/below threshold
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Tau effects in the spectrum

dB(BT — K*p*u™)/dg®
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Tau effects in the spectrum
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Tau effects in the spectrum

BBt — K*tt7t7) = BaBar upper limit
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Cusp at 77 threshold distortion above and below threshold
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Preliminary sensitivity and prospects

Preliminary sensitivity @ LHCDb:
BBt > KTttr7) <8.1-06(107H @95%C.L.

using 9 fb~! of pseudodata (40k events after cutting resonances).

Future projections, assuming FF uncertainty reduced to 30 % :

BBt > KT1ttt7) <7.6- (107 @95%C.L.
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Conclusions and outlook

If B-anomalies are true, we expect a large enhancement in b — s77.

Direct measurements are challenging, current bounds are weak.
An indirect bound via the Bt - K*u*u~spectrum is a viable option!

To this end, a good description of hadronic long-distance effects is crucial.
— inclusion of single and two-particle contributions ( qz— shape fixed,
magnitudes and phases to be fitted from data).

Coming next: Full fledged fit, possible extensionto B — K*u™pu~.
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Thank you!
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