Universität Zürich ${ }^{\text {VZH }}$

Hunting τ loops in $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$

Claudia Cornella
 University of Zurich

based on ongoing work with G.Isidori, M.König, S. Liechti, P. Owen, N.Serra

Introduction

Flavour anomalies in semileptonic B-decays:

Introduction

Flavour anomalies in semileptonic B-decays:

Combined explanation calls for NP coupled dominantly to 3rd generation

Introduction

Flavour anomalies in semileptonic B-decays:

Combined explanation calls for NP coupled dominantly to 3rd generation
General prediction: huge enhancement of $b \rightarrow s \tau \tau$ transitions!

Constraining NP in taus...from muons?

Probing $b \rightarrow s \tau \tau$ directly is experimentally very challenging:

$$
\begin{aligned}
B^{+} & \rightarrow K^{+} \tau^{+} \tau^{-} & \mathscr{B}_{\exp }<2.25 \cdot 10^{-3} & {[\mathrm{BaBar}] }
\end{aligned} \quad \mathscr{B}_{\mathrm{SM}}=1.2 \cdot 10^{-7}
$$

Constraining NP in taus...from muons?

Probing $b \rightarrow s \tau \tau$ directly is experimentally very challenging:

$$
\begin{aligned}
B^{+} \rightarrow K^{+} \tau^{+} \tau^{-} & \mathscr{B}_{\exp }<2.25 \cdot 10^{-\mathbf{3}} & {[\text { [BaBar }] } & \mathscr{B}_{\mathrm{SM}}=1.2 \cdot 10^{-7} \\
B_{s} \rightarrow \tau^{+} \tau^{-} & \mathscr{B}_{\exp }<6.8 \cdot 10^{-\mathbf{3}} & {[\mathrm{LHCb}] } & \mathscr{B}_{\mathrm{SM}}=7.73 \cdot 10^{-7}
\end{aligned}
$$

Lots of data available in $b \rightarrow s \mu \mu$.

Constraining NP in taus...from muons?

Probing $b \rightarrow s \tau \tau$ directly is experimentally very challenging:

$$
\begin{array}{rlll}
B^{+} \rightarrow K^{+} \tau^{+} \tau^{-} & \mathscr{B}_{\exp }<2.25 \cdot 10^{-3} & {[\text { BaBar }]} & \mathscr{B}_{\mathrm{SM}}=1.2 \cdot 10^{-7} \\
B_{s} \rightarrow \tau^{+} \tau^{-} & \mathscr{B}_{\exp }<6.8 \cdot 10^{-\mathbf{3}} & {[\mathrm{LHCb}]} & \mathscr{B}_{\mathrm{SM}}=7.73 \cdot 10^{-7}
\end{array}
$$

Lots of data available in $b \rightarrow s \mu \mu$.

Can we probe $b \rightarrow s \tau \tau$ via its imprint on the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$dimuon spectrum?

Constraining NP in taus...from muons?

Probing $b \rightarrow s \tau \tau$ directly is experimentally very challenging:

$$
\begin{array}{rlrlr}
B^{+} & \rightarrow K^{+} \tau^{+} \tau^{-} & \mathscr{B}_{\exp }<2.25 \cdot 10^{-3} & {[\mathrm{BaBar}]} & \mathscr{B}_{\mathrm{SM}}=1.2 \cdot 10^{-7} \\
B_{s} & \rightarrow \tau^{+} \tau^{-} & \mathscr{B}_{\exp }<6.8 \cdot 10^{-\mathbf{3}} & {[\mathrm{LHCb}]} & \mathscr{B}_{\mathrm{SM}}=7.73 \cdot 10^{-7}
\end{array}
$$

Lots of data available in $b \rightarrow s \mu \mu$.

Can we probe $b \rightarrow s \tau \tau$ via its imprint on the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$dimuon spectrum?

Constraining NP in taus...from muons?

Probing $b \rightarrow s \tau \tau$ directly is experimentally very challenging:

$$
\begin{array}{rlrlr}
B^{+} & \rightarrow K^{+} \tau^{+} \tau^{-} & \mathscr{B}_{\exp }<2.25 \cdot 10^{-3} & {[\mathrm{BaBar}]} & \mathscr{B}_{\mathrm{SM}}=1.2 \cdot 10^{-7} \\
B_{s} & \rightarrow \tau^{+} \tau^{-} & \mathscr{B}_{\exp }<6.8 \cdot 10^{-\mathbf{3}} & {[\mathrm{LHCb}]} & \mathscr{B}_{\mathrm{SM}}=7.73 \cdot 10^{-7}
\end{array}
$$

Lots of data available in $b \rightarrow s \mu \mu$.

Can we probe $b \rightarrow s \tau \tau$ via its imprint on the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$dimuon spectrum?

...a solid description of SM spectrum shape in the full q^{2} range is needed!

EFT description of $b \rightarrow$ sl ℓ

Weak effective Lagrangian: $\quad \mathscr{L}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} C_{i}(\mu) O_{i}$,
$\mathrm{SM}: \begin{cases}O_{9}^{\ell}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{e} \gamma^{\mu} \ell\right) & O_{10}^{\ell}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{e} \gamma^{\mu} \gamma_{5} \ell\right) \\ O_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} & \\ O_{1}^{q}=\left(\bar{s} \gamma_{\mu} P_{L} q\right)\left(\bar{q} \gamma^{\mu} P_{L} b\right) & O_{2}^{q}=\left(\bar{s}^{\alpha} \gamma_{\mu} P_{L} q^{\beta}\right)\left(\bar{q}^{\beta} \gamma^{\mu} P_{L} b^{\alpha}\right)\end{cases}$
NP: $\quad C_{i}^{\mathrm{SM}} \rightarrow C_{i}^{\mathrm{SM}}+\delta C_{i}^{N P}$ and/or new operators

EFT description of $b \rightarrow$ sl ℓ

Weak effective Lagrangian: $\quad \mathscr{L}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} C_{i}(\mu) O_{i}$,
$\mathrm{SM}: \begin{cases}O_{9}^{\ell}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) & O_{10}^{\ell}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right) \\ O_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} & \\ O_{1}^{q}=\left(\bar{s} \gamma_{\mu} P_{L} q\right)\left(\bar{q} \gamma^{\mu} P_{L} b\right) & O_{2}^{q}=\left(\bar{s}^{\alpha} \gamma_{\mu} P_{L} q^{\beta}\right)\left(\bar{q}^{\beta} \gamma^{\mu} P_{L} b^{\alpha}\right)\end{cases}$
NP: $\quad C_{i}^{\mathrm{SM}} \rightarrow C_{i}^{\mathrm{SM}}+\delta C_{i}^{N P}$ and/or new operators

Local (short distance)

EFT description of $b \rightarrow$ sl ℓ

Weak effective Lagrangian: $\quad \mathscr{L}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} C_{i}(\mu) O_{i}$,
$\mathrm{SM}: \begin{cases}O_{9}^{\ell}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) & O_{10}^{\ell}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right) \\ O_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} & \\ O_{1}^{q}=\left(\bar{s} \gamma_{\mu} P_{L} q\right)\left(\bar{q} \gamma^{\mu} P_{L} b\right) & O_{2}^{q}=\left(\bar{s}^{\alpha} \gamma_{\mu} P_{L} q^{\beta}\right)\left(\bar{q}^{\beta} \gamma^{\mu} P_{L} b^{\alpha}\right)\end{cases}$
NP: $\quad C_{i}^{\mathrm{SM}} \rightarrow C_{i}^{\mathrm{SM}}+\delta C_{i}^{N P}$ and/or new operators

Local (short distance)

Two ingredients needed:

EFT description of $b \rightarrow$ sl ℓ

Weak effective Lagrangian: $\quad \mathscr{L}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} C_{i}(\mu) O_{i}$,
$\mathrm{SM}: \begin{cases}O_{9}^{\ell}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) & O_{10}^{\ell}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right) \\ O_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} & \\ O_{1}^{q}=\left(\bar{s} \gamma_{\mu} P_{L} q\right)\left(\bar{q} \gamma^{\mu} P_{L} b\right) & O_{2}^{q}=\left(\bar{s}^{\alpha} \gamma_{\mu} P_{L} q^{\beta}\right)\left(\bar{q}^{\beta} \gamma^{\mu} P_{L} b^{\alpha}\right)\end{cases}$
NP: $\quad C_{i}^{\mathrm{SM}} \rightarrow C_{i}^{\mathrm{SM}}+\delta C_{i}^{N P}$ and/or new operators

Local (short distance)

Two ingredients needed:

- $C_{i}^{S M}(\mu)$

EFT description of $b \rightarrow$ sl ℓ

Weak effective Lagrangian: $\quad \mathscr{L}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} C_{i}(\mu) O_{i}$,
$\mathrm{SM}: \begin{cases}O_{9}^{\ell}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) & O_{10}^{\ell}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right) \\ O_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} & \\ O_{1}^{q}=\left(\bar{s} \gamma_{\mu} P_{L} q\right)\left(\bar{q} \gamma^{\mu} P_{L} b\right) & O_{2}^{q}=\left(\bar{s}^{\alpha} \gamma_{\mu} P_{L} q^{\beta}\right)\left(\bar{q}^{\beta} \gamma^{\mu} P_{L} b^{\alpha}\right)\end{cases}$
NP: $\quad C_{i}^{\mathrm{SM}} \rightarrow C_{i}^{\mathrm{SM}}+\delta C_{i}^{N P}$ and/or new operators

Local (short distance)

Two ingredients needed:

- $C_{i}^{S M}(\mu)$
- form factors $f_{i}\left(q^{2}\right)$ for $B \rightarrow K$

Non-local effects: the charm loop

Non-local (long distance) effects arise via 4-quark + chromomagnetic operator. Included via

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

Non-local effects: the charm loop

Non-Iocal (long distance) effects arise via 4-quark + chromomagnetic operator. Included via

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

Non-local effects: the charm loop

Non-Iocal (long distance) effects arise via 4-quark + chromomagnetic operator. Included via

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

"charm loop"

[Semi]perturbative approach valid at low q^{2} : Pert. contribution + expansion in $\Lambda_{Q C D}^{2} /\left(q^{2}-4 m_{c}^{2}\right)$
[Khodjamirian et al., 1212.0234] cannot be applied in the full kinematical range :

Non-local effects: the charm loop

Non-Iocal (long distance) effects arise via 4-quark + chromomagnetic operator. Included via

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

[Semi]perturbative approach valid at low q^{2} :
Pert. contribution + expansion in $\Lambda_{Q C D}^{2} /\left(q^{2}-4 m_{c}^{2}\right)$
[Khodjamirian et al., 1212.0234] cannot be applied in the full kinematical range :

...intrinsically non perturbative objects!

Non-local effects: the charm loop

Non-Iocal (long distance) effects arise via 4-quark + chromomagnetic operator. Included via

$$
C_{9} \rightarrow C_{9}^{\mathrm{eff}}\left(q^{2}\right)=C_{9}+Y\left(q^{2}\right)
$$

[Semi]perturbative approach valid at low q^{2} :
Pert. contribution + expansion in $\Lambda_{Q C D}^{2} /\left(q^{2}-4 m_{c}^{2}\right)$
[Khodjamirian et al., 1212.0234] cannot be applied in the full kinematical range :

...intrinsically non perturbative objects!

Goal: model long-distance effects at experiments, in the entire spectrum.

Long-distance effects at experiments
light resonances

Long-distance effects at experiments
light resonances

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb...]

Long-distance effects at experiments
light resonances

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb...]
- LHCb [2016] first fit to full spectrum, including resonances: [Lyon, Zwicky 1406.0566] [LHCb 1612.06764]

$$
Y\left(q^{2}\right)=\sum_{V \nearrow} \eta_{V} e^{i \delta_{V}} \underbrace{A_{V}^{\mathrm{res}}\left(q^{2}\right)}
$$

fit parameters
Breit Wigner

Long-distance effects at experiments
light resonances

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb...]
- LHCb [2016] first fit to full spectrum, including resonances: [Lyon, Zwicky 1406.0566] [LHCb 1612.06764]

$$
Y\left(q^{2}\right)=\sum_{V} \eta_{V} \eta e^{i \delta_{V}} \underbrace{A_{V}^{\mathrm{res}}\left(q^{2}\right.})
$$

fit parameters
Breit Wigner

Why working towards a better parametrisation?

Long-distance effects at experiments
light resonances

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb...]
- LHCb [2016] first fit to full spectrum, including resonances: [Lyon, Zwicky 1406.0566] [LHCb 1612.06764]
fit parameters Breit Wigner

Why working towards a better parametrisation?

- access long-distance info inaccessible from first principles [e.g. phases]

Long-distance effects at experiments
light resonances

- Standard approach: exclude events close to resonances [Babar, Belle, CDF, CMS, LHCb...]
- LHCb [2016] first fit to full spectrum, including resonances: [Lyon, Zwicky 1406.0566] [LHCb 1612.06764]

Why working towards a better parametrisation?

- access long-distance info inaccessible from first principles [e.g. phases]
- extract reliable short-distance info [hence NP!]

Charm loops: resonances

For the charm we employ a dispersive approach, with subtraction in $q^{2}=0$:

$$
\Delta Y_{c \bar{c}}\left(q^{2}\right)=\frac{q^{2}}{\pi} \int_{s_{0}}^{\infty} \frac{d s}{s} \frac{\rho_{c \bar{c}}(s)}{\left(s-q^{2}\right)}
$$

Charm loops: resonances

For the charm we employ a dispersive approach, with subtraction in $q^{2}=0$:

$$
\Delta Y_{c \bar{c}}\left(q^{2}\right)=\frac{q^{2}}{\pi} \int_{s_{0}}^{\infty} \frac{d s}{s} \frac{\rho_{c \bar{c}}(s)}{\left(s-q^{2}\right)}
$$

We include single- and two-particle contributions:

$$
\rho_{c \bar{c}}(s) \approx \rho_{c \bar{c}}^{1 P}(s)+\rho_{c \bar{c}}^{2 P}(s)
$$

Charm loops: resonances

For the charm we employ a dispersive approach, with subtraction in $q^{2}=0$:

$$
\Delta Y_{c \bar{c}}\left(q^{2}\right)=\frac{q^{2}}{\pi} \int_{s_{0}}^{\infty} \frac{d s}{s} \frac{\rho_{c \bar{c}}(s)}{\left(s-q^{2}\right)}
$$

We include single- and two-particle contributions:

$$
\rho_{c \bar{c}}(s) \approx \rho_{c \bar{c}}^{1 P}(s)+\rho_{c \bar{c}}^{2 P}(s)
$$

Charmonium resonances:

$$
\begin{gathered}
\Delta Y_{c \bar{c}}^{\mathrm{PP}}\left(q^{2}\right)=\sum_{V} \eta_{V} e^{i \delta_{V}} \frac{q^{2}}{m_{V}^{2}} A_{V}^{\mathrm{res}}\left(q^{2}\right) \\
V=J / \psi, \psi(2 S), \psi(3770), \psi(4040), \psi(4160), \psi(4415)
\end{gathered}
$$

Charm loops: resonances

For the charm we employ a dispersive approach, with subtraction in $q^{2}=0$:

$$
\Delta Y_{c \bar{c}}\left(q^{2}\right)=\frac{q^{2}}{\pi} \int_{s_{0}}^{\infty} \frac{d s}{s} \frac{\rho_{c \bar{c}}(s)}{\left(s-q^{2}\right)}
$$

We include single- and two-particle contributions:

$$
\rho_{c \bar{c}}(s) \approx \rho_{c \bar{c}}^{1 P}(s)+\rho_{c \bar{c}}^{2 P}(s)
$$

Charmonium resonances:

$$
\mathrm{BW} \text {, subtracted in } q^{2}=0!
$$

$$
\begin{gathered}
\Delta Y_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)=\sum_{V} \eta_{V} e^{i \delta_{V} \frac{q^{2}}{m_{V}^{2}} A_{V}^{\mathrm{res}}\left(q^{2}\right)} \\
V=J / \psi, \psi(2 S), \psi(3770), \psi(4040), \psi(4160), \psi(4415)
\end{gathered}
$$

Charm loops: two-particle states

Two-particle $\bar{c} c$ states:

$$
\begin{aligned}
& \Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)=\sum_{V V^{\prime}} \eta_{V V^{\prime}} e^{i \delta_{V V^{\prime}}} A_{V V^{\prime}}^{2 \mathrm{P}}\left(q^{2}\right) \quad A_{V V^{\prime}}^{2 \mathrm{P}}(s)=\frac{s}{\pi} \int_{s_{0}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{V V^{\prime}}(\tilde{s})}{(\tilde{s}-s)}, \\
& V V^{\prime}=D D, D^{*} D^{*}, D D^{*}
\end{aligned}
$$

Charm loops: two-particle states

Two-particle $\bar{c} c$ states:

$$
\begin{aligned}
& \Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)=\sum_{V V^{\prime}} \eta_{V V^{\prime}} e^{i \delta_{V V^{\prime}}} A_{V V^{\prime}}^{2 \mathrm{P}}\left(q^{2}\right) \quad A_{V V^{\prime}}^{2 \mathrm{P}}(s)=\frac{s}{\pi} \int_{s_{0}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{V V^{\prime}}(\tilde{s})}{(\tilde{s}-s)}, \\
& V V^{\prime}=D D, D^{*} D^{*}, D D^{*} \\
& \rho_{V V^{\prime}}(s)=\operatorname{Im}\left\{\underset{\mu}{D_{\mu}^{(x)}\left(\bigcup_{\mu}^{(*)}\right.}\right\}=?
\end{aligned}
$$

Charm loops: two-particle states

Two-particle $\bar{c} c$ states:

$$
\begin{aligned}
& \Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)=\sum_{V V^{\prime}} \eta_{V V^{\prime}} e^{i \delta_{V V^{\prime}} A_{V V^{\prime}}^{2 \mathrm{P}}\left(q^{2}\right) \quad A_{V V^{\prime}}^{2 \mathrm{P}}(s)=\frac{s}{\pi} \int_{s_{0}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{V V^{\prime}}(\tilde{s})}{(\tilde{s}-s)}} \begin{array}{l}
V V^{\prime}=D D, D^{*} D^{*}, D D^{*}
\end{array},
\end{aligned}
$$

$$
\rho_{V V}(s)=\operatorname{Im}\left\{\underset{\mu}{{\underset{\sim}{x}}_{(x)}^{B} \bigcup_{\mu}^{(x)}}\right\}=?
$$

..estimate from helicity arguments!

Charm loops: two-particle states

Two-particle $\bar{c} c$ states:

$$
\begin{aligned}
& \Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)=\sum_{V V^{\prime}} \eta_{V V^{\prime}} e^{i \delta_{V V^{\prime}}} A_{V V^{\prime}}^{2 \mathrm{P}}\left(q^{2}\right) \quad A_{V V^{\prime}}^{2 \mathrm{P}}(s)=\frac{s}{\pi} \int_{s_{0}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{V V^{\prime}}(\tilde{s})}{(\tilde{s}-s)}, \\
& V V^{\prime}=D D, D^{*} D^{*}, D D^{*}
\end{aligned}
$$

Charm loops: two-particle states

Two-particle $\bar{c} c$ states:

$$
\begin{aligned}
& \Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)=\sum_{V V^{\prime}} \eta_{V V^{\prime}} e^{i \delta_{V V^{\prime}}} A_{V V^{\prime}}^{2 \mathrm{P}}\left(q^{2}\right) \quad A_{V V^{\prime}}^{2 \mathrm{P}}(s)=\frac{s}{\pi} \int_{s_{0}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{V V^{\prime}}(\tilde{s})}{(\tilde{s}-s)}, \\
& V V^{\prime}=D D, D^{*} D^{*}, D D^{*}
\end{aligned}
$$

$$
\rho_{V V^{\prime}}(s)=\operatorname{Im}\left\{\underset{\mu}{\underset{\mu}{D^{(x)}}\left(\bigcup^{(*)}\right.}\right\}=\sum_{n} c_{n}^{V V^{\prime}} \beta^{n}\left(4 m_{V V^{\prime}}^{2} / s\right) \quad \beta(\tau)=\sqrt{1-\tau}
$$

Keeping leading partial wave only: $\quad \rho_{D D} \sim \beta^{3}, \rho_{D^{*} D^{*}} \sim \beta^{3}, \rho_{D D^{*}} \sim \beta$

Charm loops: two-particle states

Two-particle $\bar{c} c$ states:

$$
\begin{aligned}
& \Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)=\sum_{V V^{\prime}} \eta_{V V^{\prime}} e^{i \delta_{V V^{\prime}}} A_{V V^{\prime}}^{2 \mathrm{P}}\left(q^{2}\right) \quad A_{V V^{\prime}}^{2 \mathrm{P}}(s)=\frac{s}{\pi} \int_{s_{0}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{V V^{\prime}}(\tilde{s})}{(\tilde{s}-s)}, \\
& V V^{\prime}=D D, D^{*} D^{*}, D D^{*}
\end{aligned}
$$

$$
\rho_{V V^{\prime}}(s)=\operatorname{Im}\{\underset{\mu}{\underset{D^{(x)}}{D^{(0)}} \underbrace{(*)}}\}=\sum_{n} c_{n}^{V V^{\prime}} \beta^{n}\left(4 m_{V V^{\prime}}^{2} / s\right) \quad \beta(\tau)=\sqrt{1-\tau}
$$

Keeping leading partial wave only: $\quad \rho_{D D} \sim \beta^{3}, \rho_{D^{*} D^{*}} \sim \beta^{3}, \rho_{D D^{*}} \sim \beta$
Constrain fit using perturbative charm loop:

$$
Y_{c \bar{c}}^{\mathrm{P}}\left(q^{2}\right)+Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right) \approx Y_{c \bar{c}}^{\mathrm{pert}}\left(q^{2}\right) \quad q^{2} \ll 4 m_{c}^{2}
$$

Charm loops: two-particle states

Two-particle $\bar{c} c$ states:

$$
\begin{aligned}
& \Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)=\sum_{V V^{\prime}} \eta_{V V^{\prime}} e^{i \delta_{V V^{\prime}}} A_{V V^{\prime}}^{2 \mathrm{P}}\left(q^{2}\right) \quad A_{V V^{\prime}}^{2 \mathrm{P}}(s)=\frac{s}{\pi} \int_{s_{0}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{V V^{\prime}}(\tilde{s})}{(\tilde{s}-s)} \\
& V V^{\prime}=D D, D^{*} D^{*}, D D^{*}
\end{aligned}
$$

Keeping leading partial wave only: $\quad \rho_{D D} \sim \beta^{3}, \rho_{D^{*} D^{*}} \sim \beta^{3}, \rho_{D D^{*}} \sim \beta$
Constrain fit using perturbative charm loop:

$$
Y_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right) \approx Y_{c \bar{c}}^{\mathrm{pert}}\left(q^{2}\right) \quad q^{2} \ll 4 m_{c}^{2}
$$

Up contribution is CKM suppressed: only resonances included.

Charm loops: two-particle states

$$
\rho_{D D}=\left(1-\frac{4 m_{D}^{2}}{s}\right)^{3 / 2} \quad \rho_{D^{*} D}=\left(1-\frac{4 m_{\bar{D}}^{2}}{s}\right)^{1 / 2} \quad \rho_{D^{*} D^{*}}=\left(1-\frac{4 m_{D^{*}}^{2}}{s}\right)^{3 / 2}
$$

Charm loops: two-particle states

$$
\rho_{D D}=\left(1-\frac{4 m_{D}^{2}}{s}\right)^{3 / 2} \quad \rho_{D^{*} D}=\left(1-\frac{4 m_{\bar{D}}^{2}}{s}\right)^{1 / 2} \quad \rho_{D^{*} D^{*}}=\left(1-\frac{4 m_{D^{*}}^{2}}{s}\right)^{3 / 2}
$$

Charm loops: two-particle states

$$
\rho_{D D}=\left(1-\frac{4 m_{D}^{2}}{s}\right)^{3 / 2} \quad \rho_{D^{* D}}=\left(1-\frac{4 m_{\bar{D}}^{2}}{s}\right)^{1 / 2} \quad \rho_{D^{*} D^{*}}=\left(1-\frac{4 m_{D^{*}}^{2}}{s}\right)^{3 / 2}
$$

Charm loops: two-particle states

$$
\rho_{D D}=\left(1-\frac{4 m_{D}^{2}}{s}\right)^{3 / 2} \quad \rho_{D^{*} D}=\left(1-\frac{4 m_{D}^{2}}{s}\right)^{1 / 2} \quad \rho_{D^{*} D^{*}}=\left(1-\frac{4 m_{D^{*}}^{2}}{s}\right)^{3 / 2}
$$

Charm loops: two-particle states

$$
\rho_{D D}=\left(1-\frac{4 m_{D}^{2}}{s}\right)^{3 / 2} \quad \rho_{D^{*} D}=\left(1-\frac{4 m_{\bar{D}}^{2}}{s}\right)^{1 / 2} \quad \rho_{D^{*} D^{*}}=\left(1-\frac{4 m_{D^{*}}^{2}}{s}\right)^{3 / 2}
$$

Our proposal

We parametrise hadronic long-distance contributions as:

$$
Y\left(q^{2}\right)=Y_{0}+Y_{l i g h t}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)
$$

Our proposal

We parametrise hadronic long-distance contributions as:

$$
Y\left(q^{2}\right)=Y_{0}+Y_{l i g h t}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)
$$

The q^{2} - dependence is fixed by the position of one- and two-particle thresholds.

Our proposal

We parametrise hadronic long-distance contributions as:

$$
Y\left(q^{2}\right)=Y_{0}+Y_{l i g h t}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)
$$

The q^{2} - dependence is fixed by the position of one- and two-particle thresholds.
Magnitudes and phases are fit parameters (12)!

Our proposal

We parametrise hadronic long-distance contributions as:

$$
Y\left(q^{2}\right)=Y_{0}+Y_{l i g h t}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)
$$

The q^{2} - dependence is fixed by the position of one- and two-particle thresholds.
Magnitudes and phases are fit parameters (12)!

What is new?

Our proposal

We parametrise hadronic long-distance contributions as:

$$
Y\left(q^{2}\right)=Y_{0}+Y_{l i g h t}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)
$$

The q^{2} - dependence is fixed by the position of one- and two-particle thresholds.
Magnitudes and phases are fit parameters (12)!

What is new?

- inclusion of two-particle intermediate $\bar{c} c$ states

Our proposal

We parametrise hadronic long-distance contributions as:

$$
Y\left(q^{2}\right)=Y_{0}+Y_{l i g h t}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)
$$

The q^{2} - dependence is fixed by the position of one- and two-particle thresholds.
Magnitudes and phases are fit parameters (12)!

What is new?

- inclusion of two-particle intermediate $\bar{c} c$ states
- charm contribution subtracted in $q^{2}=0: \Delta Y_{c \bar{c}}^{\mathrm{nP}}(0)=0$, remainder in Y_{0}

Our proposal

We parametrise hadronic long-distance contributions as:

$$
Y\left(q^{2}\right)=Y_{0}+Y_{l i g h t}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{1 \mathrm{P}}\left(q^{2}\right)+\Delta Y_{c \bar{c}}^{2 \mathrm{P}}\left(q^{2}\right)
$$

The q^{2} - dependence is fixed by the position of one- and two-particle thresholds.
Magnitudes and phases are fit parameters (12)!

What is new?

- inclusion of two-particle intermediate $\bar{c} c$ states
- charm contribution subtracted in $q^{2}=0: \Delta Y_{c \bar{c}}^{\mathrm{nP}}(0)=0$, remainder in Y_{0}
- theory constraints from perturbative results

Tau loops in $b \rightarrow s \mu \mu$

The tau loop also enters as a q^{2}-dependent shift in $C_{9}^{\text {eff }}\left(q^{2}\right)$:

Tau loops in $b \rightarrow s \mu \mu$

The tau loop also enters as a q^{2}-dependent shift in $C_{9}^{\text {eff }}\left(q^{2}\right)$:

Non-local effect, distinct from mixing between O_{9}^{μ} and O_{9}^{τ}. Allows for model independent extraction of $C_{9}^{\tau_{!}}$

Tau loops in $b \rightarrow s \mu \mu$

The tau loop also enters as a q^{2}-dependent shift in $C_{9}^{\text {eff }}\left(q^{2}\right)$:

$$
Y_{\bar{\tau} \tau}^{2 P}\left(q^{2}\right)=-\frac{\alpha}{2 \pi} C_{9}^{\tau}\left[h_{s}\left(m_{\tau}^{2}, q^{2}\right)-\frac{1}{3} h_{p}\left(m_{\tau}^{2}, q^{2}\right)\right]
$$

Non-local effect, distinct from mixing between O_{9}^{μ} and O_{9}^{τ}. Allows for model independent extraction of C_{9}^{τ} !

Characteristic imprint on $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum:

Tau loops in $b \rightarrow s \mu \mu$

The tau loop also enters as a q^{2}-dependent shift in $C_{9}^{\text {eff }}\left(q^{2}\right)$:

$$
Y_{\bar{\tau} \tau}^{2 P}\left(q^{2}\right)=-\frac{\alpha}{2 \pi} C_{9}^{\tau}\left[h_{s}\left(m_{\tau}^{2}, q^{2}\right)-\frac{1}{3} h_{p}\left(m_{\tau}^{2}, q^{2}\right)\right]
$$

Non-local effect, distinct from mixing between O_{9}^{μ} and O_{9}^{τ}. Allows for model independent extraction of C_{9}^{τ} !

Characteristic imprint on $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum:

- s-wave, hence cusp at $q^{2}=4 m_{\tau}^{2}$

Tau loops in $b \rightarrow s \mu \mu$

The tau loop also enters as a q^{2}-dependent shift in $C_{9}^{\text {eff }}\left(q^{2}\right)$:

$$
Y_{\bar{\tau} \tau}^{2 P}\left(q^{2}\right)=-\frac{\alpha}{2 \pi} C_{9}^{\tau}\left[h_{s}\left(m_{\tau}^{2}, q^{2}\right)-\frac{1}{3} h_{p}\left(m_{\tau}^{2}, q^{2}\right)\right]
$$

Non-local effect, distinct from mixing between O_{9}^{μ} and O_{9}^{τ}. Allows for model independent extraction of C_{9}^{τ} !

Characteristic imprint on $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum:

- s-wave, hence cusp at $q^{2}=4 m_{\tau}^{2}$
- alter q^{2} dependence above/below threshold

Tau effects in the spectrum

Tau effects in the spectrum

Tau effects in the spectrum

cusp at $\tau \tau$ threshold

Tau effects in the spectrum

cusp at $\tau \tau$ threshold
distortion above and below threshold

Preliminary sensitivity and prospects

Preliminary sensitivity @ LHCb:

Preliminary sensitivity and prospects

Preliminary sensitivity @ LHCb:

$$
\mathscr{B}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) \lesssim 8.1 \cdot \mathscr{O}\left(10^{-4}\right) \quad @ 95 \% \mathrm{C} . \mathrm{L} .
$$

using $9 \mathrm{fb}^{-1}$ of pseudodata (40k events after cutting resonances).

Preliminary sensitivity and prospects

Preliminary sensitivity @ LHCb:

$$
\mathscr{B}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) \lesssim 8.1 \cdot \mathscr{O}\left(10^{-4}\right) \quad @ 95 \% \mathrm{C} . \mathrm{L} .
$$

using $9 \mathrm{fb}^{-1}$ of pseudodata (40k events after cutting resonances).

Future projections, assuming FF uncertainty reduced to 30% :

$$
\mathscr{B}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) \lesssim 7.6 \cdot \mathscr{O}\left(10^{-4}\right) \quad @ 95 \% \mathrm{C} . \mathrm{L} .
$$

Conclusions and outlook

If B-anomalies are true, we expect a large enhancement in $b \rightarrow s \tau \tau$.

Conclusions and outlook

If B-anomalies are true, we expect a large enhancement in $b \rightarrow s \tau \tau$.

Direct measurements are challenging, current bounds are weak.

Conclusions and outlook

If B-anomalies are true, we expect a large enhancement in $b \rightarrow s \tau \tau$.

Direct measurements are challenging, current bounds are weak. An indirect bound via the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum is a viable option!

Conclusions and outlook

If B-anomalies are true, we expect a large enhancement in $b \rightarrow s \tau \tau$.

Direct measurements are challenging, current bounds are weak. An indirect bound via the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum is a viable option!

To this end, a good description of hadronic long-distance effects is crucial.

Conclusions and outlook

If B-anomalies are true, we expect a large enhancement in $b \rightarrow s \tau \tau$.

Direct measurements are challenging, current bounds are weak.
An indirect bound via the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum is a viable option!

To this end, a good description of hadronic long-distance effects is crucial.
\rightarrow inclusion of single and two-particle contributions (q^{2} - shape fixed, magnitudes and phases to be fitted from data).

Conclusions and outlook

If B-anomalies are true, we expect a large enhancement in $b \rightarrow s \tau \tau$.

Direct measurements are challenging, current bounds are weak.
An indirect bound via the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum is a viable option!

To this end, a good description of hadronic long-distance effects is crucial.
\rightarrow inclusion of single and two-particle contributions (q^{2} - shape fixed, magnitudes and phases to be fitted from data).

Coming next: Full fledged fit,

Conclusions and outlook

If B-anomalies are true, we expect a large enhancement in $b \rightarrow s \tau \tau$.

Direct measurements are challenging, current bounds are weak.
An indirect bound via the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$spectrum is a viable option!

To this end, a good description of hadronic long-distance effects is crucial.
\rightarrow inclusion of single and two-particle contributions (q^{2} - shape fixed, magnitudes and phases to be fitted from data).

Coming next: Full fledged fit, possible extension to $B \rightarrow K^{*} \mu^{+} \mu^{-}$.

Thank you!

