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Flavour anomalies in semileptonic B-decays:

General prediction: huge enhancement of  transitions!b → sττ

C

 universalityτ/μ
b → sℓℓb → cτν

 universalityμ/e

≫
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Constraining NP in taus…from muons?       

3

Probing  directly is experimentally very challenging:b → sττ

Lots of data available in . b → sμμ

B+ → K+τ+τ− ℬexp < 2.25 ⋅ 10−3 [BaBar] ℬSM = 1.2 ⋅ 10−7

ℬexp < 6.8 ⋅ 10−3 [LHCb] ℬSM = 7.73 ⋅ 10−7
Bs → τ+τ−

…a solid description of SM spectrum shape in 
the full  range is needed!  q2
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VtbV*ts ∑
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Ci(μ) Oi ,
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Non-local (long distance) effects arise via 4-quark + chromomagnetic operator. 
Included via 9

C9 → Ceff
9 (q2) = C9 + Y(q2)

Z

“charm loop”

…intrinsically non perturbative objects!

Goal: model long-distance effects at experiments, in the entire spectrum.

cannot be applied in the full kinematical range :

Pert. contribution + expansion in Λ2
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Breit Wignerfit parameters

Y(q2) = ∑
V

ηV eiδV Ares
V (q2)

Long-distance effects at experiments 

Why working towards a better parametrisation?

• access long-distance info unaccessible from first principles [e.g. phases ]

• extract reliable short-distance info [hence NP!]

• Standard approach: exclude events close 
to resonances [Babar, Belle, CDF, CMS, LHCb…]

6

• LHCb [2016] first fit to full spectrum, 
including  resonances:

[LHCb 1612.06764]
[Lyon, Zwicky 1406.0566]
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m2
V

Ares
V (q2)

We include single- and two-particle contributions:

V = J/ψ, ψ(2S), ψ(3770) , ψ(4040), ψ(4160), ψ(4415)

 BW, subtracted in !q2 = 0
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Keeping leading partial wave only: 

…estimate from helicity arguments!
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• -wave, hence cusp at s q2 = 4m2
τ

• alter  dependence above/below thresholdq2

The tau loop also enters as a -dependent shift in :q2 Ceff
9 (q2)

Y2P
τ̄τ (q2) = −

α
2π

Cτ
9 [hs (m2

τ , q2) −
1
3

hp (m2
τ , q2)]

Oτ
9

Characteristic imprint on  spectrum:B+ → K+μ+μ−

Non-local effect, distinct from mixing between  and .Oμ
9 Oτ

9
Allows for model independent extraction of !Cτ

9



12

Tau effects in the spectrum



12

Tau effects in the spectrum

 BaBar upper limitℬ(B+ → K+τ+τ−) =



12

Tau effects in the spectrum

 BaBar upper limitℬ(B+ → K+τ+τ−) =

cusp at  threshold ττ



12

Tau effects in the spectrum

 BaBar upper limitℬ(B+ → K+τ+τ−) =

cusp at  threshold ττ distortion above and below threshold 
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Preliminary sensitivity and prospects

ℬ(B+ → K+τ+τ−) ≲ 7.6 ⋅ 𝒪(10−4) @95 % C . L .

Future projections, assuming FF uncertainty reduced to :30 %

ℬ(B+ → K+τ+τ−) ≲ 8.1 ⋅ 𝒪(10−4) @95 % C . L .

 Preliminary sensitivity @ LHCb:

using  of pseudodata (40k events after cutting resonances).9 fb−1
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If -anomalies are true, we expect a large enhancement in .B b → sττ

Direct measurements are challenging, current bounds are weak.
An indirect bound via the spectrum is a viable option!B+ → K+μ+μ−

To this end, a good description of hadronic long-distance effects is crucial.
 inclusion of single and two-particle contributions ( - shape fixed, 

magnitudes and phases to be fitted from data).
→ q2

Coming next: Full fledged fit, possible extension to .B → K*μ+μ−
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Thank you! 


