

muCool: Towards a high-brightness ultra-cold positive muon beam line at PSI

R. Iwai (ETHZ) on behalf of muCool collaboration

Muon beams at PSI

- High power proton beam colliding graphite target
- Surface μ^+ at 4.1 MeV most widely used ($\Delta x \sim cm$)
 - → Large room for improvement in phase space quality
- Standard beam cooling techniques not applicable due to limited τ_{μ} (2.2 µs) → muCool scheme

muCool project

- Device to compress the phase space of a standard muon beam by 10 orders of magnitude
- Cryogenic He gas stopping target with complex fields
- Reduce energy (4.1 MeV \rightarrow <1 eV) and beam size (10 mm \rightarrow <1mm)
- Efficiency ~10-3
- Conserve initial polarisation

Motivation

Particle physics

- Muon g-2/EDM
- High quality Mu beam from SFHe
 - → 1S-2S spectroscopy
 - → Test anti-matter gravity

Solid state physics (µSR)

• Study thin materials, small samples

Working principle (old)

Transverse compression

Demonstration of transverse comp.

7

- Demonstrated in 2015 I. Belosevic et al., Hyperfine Interact (2019) 240: 41.
- Excellent agreement between measurement and simulation

Longitudinal compression

5 mbar He gas Ŕ \vec{E} Room temperature Parallel E- and B-field \vec{E} Demonstrated in 2011/2014 293 K 4K Y Simulation: Top view **>** x โม -30 2 -20 \boldsymbol{z} -10 $\vec{v}_D = \frac{\mu E}{1 + \omega^2 \tau_c^2} [\hat{E} + \omega \tau_c \hat{E} \times \hat{B} + \omega^2 \tau_c^2 (\hat{E} \cdot \hat{B}) \hat{B}]$ Towards µ+ from 10 transverse stage extraction 20 30 8 4 x [mm]

Mixed transverse & longitudinal compression

New scheme with simpler setup
 Single stage at cryogenic temperature

9

Realised target

• Kapton foil with equipotential lines

Beam test setup

• First demonstration of mixed compression at the end of 2017

Target installation

Measurement of mixed compression

Transverse direction

muCool: Next steps

Increase E-field strength

Extract muons into vacuum

- Through 1×1 mm² orifice
- He gas injection and efficient pumping to maintain target pressure

Conclusions

muCool project developing a high-brightness ultra-cold positive muon beam

- Transverse and longitudinal compressions separately demonstrated.
 Excellent agreement between data and simulation.
- Mixed compression scheme partially demonstrated
- Next: Improve mixed compression & develop muon extraction

Supported by SNF grant 200020_172639

Back up

Demonstration of longitudinal comp.

- Demonstrated in 2011/2014 I. Belosevic et al., Eur. Phys. J. C (2019) **79**: 430
- Excellent agreement between measurement and simulation

Target for surface muons

~100 cm long needed

Improve maximum E-field

- Limited by discharging He gas
- Coverlay on electrodes, reducing *"hot spot",* materials with lower ε_r

20