

Diamond Pixel Fabrication PhD Seminar 2019

Diego Alejandro Sanz Becerra

- Why Diamonds?
- Planar Hybrid Pixelated Detectors
- Microfabrication Techniques
- Samples Preparation
- Fabrication Process
- Preliminary Results (Testbeam September 2019)

Why Diamonds?

- The innermost detectors in HL-LHC experiments will be exposed to a total fluence of 2x10¹⁶ hadrons/cm² (~1 GHz/cm²; ~500 MRad)
- Diamond is the best radiation tolerant sensor material in locations with no cooling

Make pixel detectors for future HEP experiments at ETH

Why Diamonds?

Characteristic	Silicon	Diamond	Comment	
Band Gap [eV]	1.12	5.45	Low Leakage Current	
Electron Mobility [cm ² /Vs]	1450	1714	Fast Signals	
Hole Mobility [cm ² /Vs]	500	2064	Fast Signals	
Saturation Velocity [cm/s]	0.8 x 10 ⁷	$\sim 1 \ge 10^7$	Fast Signals	
Breakdown Field [V/m]	3 x 10 ⁵	2.2 x 10 ⁷	Withstand High Fields	
Resistivity [Ω m]	3200	$> 10^{40}$	Low Leakage Current	
Dielectric Constant	11.9	5.7	Low Input Capacitance	
Displacement Energy [eV]	13-20	43	Radiation Hardness	
Thermal Conductivity [W/cmK]	1.5	22	Efficient Heat Spreading	
e-h Creation Energy [eV]	3.6	13	Small Signal	
Average e-h Pairs per MIP per µm	89	36	Small Signal	
Charge Collection Distance / thickness	100%	50% polycrystalline - 100% single crystal	Small Signal	

- Artificially grown diamonds by chemical vapor deposition:
 - Single crystal (large signals but up to ~8x8mm²; more expensive)
 - <u>Polycrystalline (small signals but up to ø6in</u> wafers; cheaper)

Diamond detectors are operated as ionisation chambers. Different from silicon sensor detectors

Planar devices are the first step before attempting more advanced geometries (i.e. 3D detectors)

Planar Hybrid Pixelated Detectors

Generic pixel detector

Quality Issues in Current and Future Silicon Detectors workshop 3-November-2011

- Sensors are typically 500µm thick polycrystalline diamond of 1cm x 1cm
- Readout chip used is the psi46digV2.1 respin
 Used for CMS layer 2 4
- Develop microfabrication techniques to couple the diamond sensor with the silicon readout chip
 - Standard silicon microfabrication recipes don't work with diamond

EHzürich

Microfabrication Techniques - Deposition

Evaporation

- Metals are heated in a vacuum chamber
- Metal vapors rise and coats surface on top
- <u>Suitable metallizations that form good contacts</u> <u>with diamond were tested</u>

https://commons.wikimedia.org/wiki/File:PlasmaCVD.PNG

Chemical Vapor Deposition

- Layers of a material are grown on a substrate under specific chemical reactions
- The mixture of gases, and chamber conditions determine the properties of the deposited material and the deposition rate
- <u>A compatible recipe with the process was</u> <u>developed to grow a passivation/protective layer</u>

Reactive Ion Etching

- A plasma of a gas mixture is used to remove desired material
- <u>A specific recipe to etch through the passivation</u> <u>layer was developed and characterized</u>

Samples preparation

- Clean with different acids at boiling temperatures to remove any surface contamination
 - From the diamond growth
 - From previous detectors (we reuse diamonds)
- Etch with Reactive Ion Etching tuned with Ar/Cl₂ and O₂ plasmas to remove ~2µm of diamond from each side
- Clean with solvents in ultrasound bath

Sensors cooling down after Aqua-regia cleaning

Pictures taken in between boiling acids cleaning. It is evident the residue from old-fabrication in the sample

Fabrication Process

1. Pixels metallization - Photoresist mask

Fabrication Process

1. Pixels metallization - Metal deposition (electron beam evaporation)

Pixels metallization - Lift-off and annealing

Sensor top surface view - thickness scaled by 10x

for ohmic contact formation on the diamond

Fabrication Process

1. Pixels metallization - Lift-off and annealing

Picture of diamond sensor after first evaporation and lift-off

Sensor slice view - thickness (vertical) scaled by 10x)

- Negative Photoresist mask (~1µm thick by spinning) for pixel delimitation
- Deposition of 10nm of Ti and 300nm of Al
- Photoresist and excess metal lift-off using solvents
- 400°C annealing with Ar \rightarrow carbide binding (C-Ti) for ohmic contact formation on the diamond Diego Alejandro Sanz Becerra | 09.10.2019 | 13

2. Passivation layer - Plasma enhanced chemical vapor deposition (peCVD) of SiO_xN_y

2. Passivation layer - Plasma enhanced chemical vapor deposition (peCVD) of SiO_xN_y

Remanent stress can crack the deposited SiON film and also the metallic layers below \rightarrow Low stress is desired for our detector

	60
	1 On
I	' Ħ

Sensor slice view - thickness (vertical) scaled by 10x)

• <u>600nm low-stress film deposition of $SiO_{x}N_{y}$ </u> <u>covering all the sensor's surface</u>

Fabrication Process

2. Passivation layer - Plasma enhanced chemical vapor deposition (peCVD) of $SiO_x N_y$

Picture of 4 diamond samples and silicon carriers after SiON deposition

Sensor slice view - thickness (vertical) scaled by 10x)

• <u>600nm low-stress film deposition of $SiO_{x}N_{y}$ </u> <u>covering all the sensor's surface</u>

2. Passivation layer - Reactive ion etching (RIE) through passivation layer

2. Passivation layer - Reactive ion etching (RIE) through passivation layer

Fabrication Process

2. Passivation layer - Photoresist removal

3. Under bump metallization (UBM) - Photoresist mask

→ Metallization required for bumps to stick in the correct position

3. Under bump metallization (UBM) - Metal deposition (electron beam evaporation)

→ Metallization required for bumps to stick in the correct position

3. Under bump metallization (UBM) - Lift-off

→ Metallization required for bumps to stick in the correct position

• UBM is required for correct bump formation Diego Alejandro Sanz Becerra | 09.10.2019 | 22

Fabrication Process

4. Indium bumps - Photoresist mask

Fabrication Process

4. Indium bumps - Indium evaporation

4. Indium bumps - Lift-off; Indium pancakes formation

• Photoresist and excess metal lift-off using solvents

Indium bumps - Lift-off; Indium pancakes formation 4.

Sensor top surface view (actual thickness)

Fabrication Process

4. Indium bumps - Lift-off; Indium pancakes formation

Microscope picture before first reflow

Sensor slice view (actual thickness)

- Negative Photoresist mask (~3.5µm thick by spinning) for In delimitation
- Deposition of 2.55µm of In (3g)
- Photoresist and excess metal lift-off using solvents
- Indium pancakes formation before reflow

5. Bump bonding - First reflow

→ Reflow is a process used to form bumps using temperature in a controlled atmosphere

Sensor top surface view (actual thickness)

Fabrication Process

5. Bump <u>bonding</u> - First reflow

Sensor slice view (actual thickness)

Ø~25µm Indium bump formation through two-step reflow process

Microscope picture after first reflow: 99.9±0.1% correct bump formation (31 visually imperfect bumps on 4 detectors)

Fabrication Process

5. Bump bonding - Flip-chip pixels connection

Sensor top surface view (actual thickness)

Diego Alejandro Sanz Becerra | 09.10.2019 | 30

Fabrication Process

5. Bump bonding - Second reflow

Sensor slice view (actual thickness)

Sensor slice view (actual thickness)

- ø~25µm Indium bump formation through two-step reflow process
- Silicon ROC (psi46digV2.1 respin) pressed with ~4kg (9mN per bump) on the sensor
- 2nd reflow homogenizes the bump bonding and corrects misalignments

Fabrication Process

5. Bump bonding - Second reflow

- Glue detector to adaptor board
- Wirebond Readout Chip (ROC) pads to adaptor board
- Wirebond sensor's back-plane to High Voltage line

Prototypes 2019

Preliminary results

Preliminary results

- ETH Telescope: Consists on 4 CMS analog pixel planes for tracking, a Scintillator for ns timing and up to 3 DUT (any digital detector)
- It has been used over the past 5 years at PSI Pi-M1 beam line (250MeV/c pions)

Preliminary results (Testbeam September 2019)

Efficiency Map CMS01

Pulse Height Map II6-93

35

Preliminary results (Testbeam September 2019)

Efficiency Map CMS01

- As it is a polycrystalline diamond, the charge collection is at least 50% compared to a single crystal diamond
- Grain boundaries and lattice defects trap charges in different location in the diamond
- Different efficiency regions could be due to:
 - Polycrystalline features
 - Problems during the fabrication process
 - Metallization sometimes lifts from the diamond Bad contact
 - Embedded features that remain after cleaning procedure in some samples - Improve cleaning
 - Diamond quality
 - Analysis problems
 - This questions must be resolved before scaling the fabrication process to a full module (1 sensors with 16 readout chips)

EHzürich

Current fabrication problems

- A fabrication procedure to make diamond planar pixel detectors has been developed
- Five working devices have been fabricated and tested in Testbeams in the past year
- Preliminary results show that there are still issues that have to be solved before moving to the next step
- If successful, the next milestone is a full module fabrication (scaling up the process)

Thank you

Diego Alejandro Sanz Becerra | 09.10.2019 | 39

Backup

Full Module

Solved bump bonding problems

6	0.	° 0			•.	. 0	0
.0	03	0	•	0 *	•••		•
•	0 .	•	•	0,	0°	0	0 =
	0.	•	•	0.	•.	•	•
ø	00		00			0,	•
0	•	•		0.	•	6	•
•	0	0.	•		0	. 0	.0
	•	•••	•	8		0,	6.
	•	0 *	•	0 .	vergroß	erung: X	164,4
0				0		0	

EHzürich

Preliminary results (Testbeam 2019)

Efficiency Map D2

Pulse Height Map SiD2

git hash: 9737767