

Measurement of the ttbb cross section in the all-jet final state with the CMS detector

Introduction

Top Pair Branching Fractions

- A precise description of the production of tt + b jets is challenging due to difficult final state
- ttbb is one of the main backgrounds for ttH(bb) and
 4 tops analyses

All hadronic:

 Largest branching fraction from ttbar decays
 Lowest S/B

 "dileptons"

Evente

- Measure the inclusive cross section
- Which one? Fiducial, total?
 - Answer: Both!

Total →	phase space At least 2 b-jets matched to 2 B-hadrons not stemming from the top decays Additional b-jets $p_T > 20 \text{ GeV}$ and $ \eta < 2.4$	 Fiducial phase space Parton independent (PI) → At least 4 b-jets at particle level → At least 6 jets with p_T > 30 GeV → At least 8 jets with p_T > 20 GeV → All jets η < 2.4 	 Fiducial phase space Parton based (PB) → At least 4 b-jets at particle level → At least 6 jets with p_T > 30 GeV → At least 8 jets with p_T > 20 GeV → All jets η < 2.4 → At least 2 b-jets not stemming from the 	PI PB reco
			stemming from the top decays	5

Event selection and MC samples

2016 data (35.92 fb-1) **Main signal sample**:

Inclusive Powheg + Pythia 8 NLO ttbarMain backgrounds:

- Multijet production (data driven) (90% of all collected events)
- ttbar + other jets (8% of all collected events)

Signal contributions:

ttbb + tt2b + ttb (split using the <u>GenHFHadronMatcher</u>)

tbb			
ttb			
t2b	\bigcirc		

Initial selection:

- At least 6 jets with $p_T > 40$ GeV and $|\eta| < 2.4$
- **2 or more** b-tagged jets
- HT > 500 GeV
- Additional jets with $p_{\tau} > 30 \text{ GeV}$
- Lepton veto

BDT for permutations

BDT designed to identify the top pair system

Take into account all possible **distinguishable combinations**:

8 jets in the event = 2520 combinations

Only combinations with $prob(\chi^2) > 1e-6$ are accepted to reduce the combinatorial background

About 60% efficiency for ttbb identification

Variables: 26:

- Invariant masses
- AR between jets
- Δφ between jets
- Δη between jets
- B-tagging discriminant for all selected jets
- χ^2 for the combination

- b-tagging discriminant of the jets not selected by the permutation BDT
- Additional jets ordered by **b-tagging** discriminant value

Multijet rejection: QGLR

Multijet rejection: Classification Without Labels (CWoLa*)

- Training a classifier using multijet simulations is complicated:
 - Difficult to simulate
 enough
 representative
 events in the PS of
 interest
 - Any data/simulation discrepancies decrease the performance
- What if we instead used data directly?

*[EMM, B. Nachman, and J. Thaler, arXiv: 1708.02949] [T. Cohen, M.Freytsis, and B.Ostdiek, arXiv: 1706.09451] Data has no labels, so we can only define regions with different fractions of **tt+jets** and **QCD**

- Hypotheses:
 - Separate only 1 signal versus 1 background :
 tt+iets vs. OCD
 - tt+jets vs. QCD
 - The pdf distribution for signal and background events in region 1 has to be the same as region 2: can only use distributions that are blind to the separation method

QGLR < 0.95

(B)(B

Multijet rejection: Classification Without Labels (CWoLa*)

Data driven QCD estimation

- Bins are merged to ensure enough events per region
- Distributions are "unrolled" to 1D
- Bins are ordered by increasing value of the expected S/B
- Define 4 different regions using cuts on the QGLR and CWoLa BDT discriminators
- 60% signal on the most significant bin

Data driven QCD estimation

- ABCD method used for each bin simultaneously fitting the 4 regions at the same time
- Maximum likelihood estimation
- Sources of systematic uncertainties are profiled (more in the next slide)
- Assumption: For each bin i,

 $\mathbb{N}_{i}^{SR} / \mathbb{N}_{i}^{CR1} = \mathbb{N}_{i}^{CR3} / \mathbb{N}_{i}^{CR2} \Rightarrow \mathbb{N}_{i}^{SR} = \mathbb{N}_{i}^{CR1} \mathbf{x}$

Systematic uncertainties

- Theory uncertainties:
 - PDF, FSR, ISR, UE tune, hdamp, renormalization and factorization scales, Colour reconnection models
 - Normalization for smaller backgrounds
 - ▶ **50%** normalization uncertainty for ttcc
- Jet energy corrections
- Corrections:
 - Ecal correction
 - ⊳ **QGLR**
 - ⊳ Pile up
 - ▷ B-tagging
 - ▷ top-p_T uncertainty
 - ⊳ Trigger
- Luminosity (2.5% for all processes), Jet energy resolution
- Multijet contribution and uncertainty determined by the fit
- Limited MC statistics

CENSIS

Source	FPS PI (%)	FPS PB (%)
Simulated sample size	$^{+15}_{-11}$	$^{+15}_{-11}$
Quark-gluon likelihood	$^{+13}_{-8}$	$^{+13}_{-8}$
b tagging of b quark	± 10	± 10
JES and JER	$^{+5.1}_{-5.2}$	$^{+5.0}_{-5.4}$
Integrated luminosity	$^{+2.8}_{-2.2}$	$^{+2.4}_{-2.2}$
Trigger efficiency	$^{+2.6}_{-2.1}$	$^{+2.5}_{-2.2}$
Pileup	$^{+2.3}_{-2.0}$	$^{+2.2}_{-1.9}$
$\mu_{ m R}$ and $\mu_{ m F}$ scales	$^{+13}_{-9}$	$^{+13}_{-9}$
Parton shower scale	$^{+11}_{-8}$	$^{+11}_{-8}$
UE tune	$^{+9.0}_{-5.3}$	$^{+9.0}_{-5.2}$
Colour reconnection	±7.2	±7.1
Shower matching (h_{damp})	$^{+4.3}_{-2.8}$	$^{+3.8}_{-2.7}$
$t\bar{t}c\bar{c}$ normalization	$^{+3.2}_{-4.4}$	$^{+2.9}_{-4.5}$
Modelling of $p_{\rm T}$ of top quark	± 2.5	± 2.4
PDFs	$^{+2.2}_{-2.0}$	$^{+2.2}_{-2.0}$
Total	$^{+28}_{-23}$	$^{+28}_{-23}$

- Observe a larger cross section value compared to predictions
- Theory uncertainties: PDF, renormalization and factorization scales

Conclusions

- Novel methods for QCD and Combinatorial backgrounds rejection developed
- First time the measurement of the ttbb cross section in the all-jet channel was performed
- Sensitivity of: 26% for fiducial definitions and 27% for the full phase-space
- Main uncertainties:
 - Experimental: MC sample size, b-tagging and QGL reweighting
 - Theory: Parton shower, renormalization and factorization scales

THANKS!

Any questions?

BACKUP

- Discrimination between quark and gluon initiated jets: Quark-Gluon Quark-like Likelihood
- Uses:
 - Number of constituents
 - **Spatial collimation**
- Optimized to distinguish light flavour quark jets from gluon jets

 \mathcal{L}_{qqqqq}

 $q_{\rm LR} =$

 $f_{q/q}(\zeta) = QGL$

quarks/gluons

 $f_q(\zeta_{j_1}) \cdot f_q(\zeta_{j_2}) \cdot f_q(\zeta_{j_3}) \cdot f_q(\zeta_{j_4}) \cdot f_q(\zeta_{j_5})$

 $\longrightarrow f_g(\zeta_{j_1}) \cdot f_g(\zeta_{j_2}) \cdot f_g(\zeta_{j_3}) \cdot f_g(\zeta_{j_4}) \cdot f_g(\zeta_{j_5})$

-

	SR	CR1	VR	CR2
Multijet	$12548.6 {\pm} 95.1$	$37073.3{\pm}280.9$	$89119.8 {\pm} 204.0$	250370.2 ± 573.0
ttlf	$18952.0{\pm}126.0$	$13885.4{\pm}90.0$	20440.2 ± 137.2	$21128.8 {\pm} 111.8$
ttcc	$8023.2 {\pm} 79.0$	$6680.6{\pm}61.5$	$9891.7 {\pm} 89.0$	$11494.3{\pm}80.6$
ttV	$325.9{\pm}8.1$	$174.0 {\pm} 5.6$	$412.4 {\pm} 9.1$	289.2 ± 7.3
Single top	$460.9 {\pm} 28.4$	$366.5 {\pm} 20.0$	$1006.5 {\pm} 41.2$	$1110.7 {\pm} 36.0$
VJ	$249.7{\pm}53.3$	$288.9 {\pm} 43.7$	$988.7 {\pm} 92.5$	$1279.4 {\pm} 92.8$
ttH	$161.1 {\pm} 0.8$	$136.1 {\pm} 0.7$	$195.8{\pm}0.9$	$221.1 {\pm} 0.8$
Diboson	$1.5{\pm}0.7$	$3.3{\pm}1.2$	$27.2 {\pm} 6.4$	17.2 ± 5.3
ttb	$2719.8 {\pm} 46.6$	2207.6 ± 35.8	3665.1 ± 54.8	4118.6 ± 48.7
ttbb	$1641.1 {\pm} 36.4$	$1365.1{\pm}28.3$	$2426.5 {\pm} 43.2$	$2679.5 {\pm} 39.1$
Data	45084	62181	128174	292709

