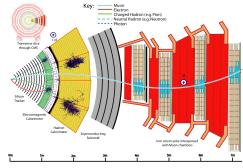


M_{T2} Analysis

Search for Supersymmetry with the M_{T2} variable in full-hadronic final states in proton-proton collisions at $\sqrt{s} = 13$ TeV

Anne-Mazarine Lyon anne-mazarine.lyon@cern.ch


Zürich PhD Student Seminar

9th October 2019

Introduction CMS detector

Introduction

- One of the four experiments of CERN-LHC
- Collects the data that is produced in p-p collisions
- Different detector layers aim at measuring different properties of particles
- The information from all detectors gathered in order to reconstruct the event
- Two-level trigger system selects the interesting events

Transverse slice of the CMS detector Anne-Mazarine Lyon

Introduction Supersymmetry as a candidate for New Physics

Introd	luction

Methodology

Results

Interpretation

Summary

Introduction

Supersymmetry as a candidate for New Physics

• Symmetry whose generators transform bosonic states into fermionic ones and vice versa

 $\mathcal{S} |\text{boson}\rangle = |\text{fermion}\rangle$ $\mathcal{S} |\text{fermion}\rangle = |\text{boson}\rangle$

Introduction	
Methodology	

Results

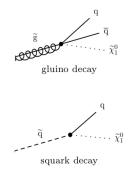
Interpretation

Summary

Introduction

Supersymmetry as a candidate for New Physics

• Symmetry whose generators transform bosonic states into fermionic ones and vice versa


Introduction

 $\mathcal{S} |\text{boson}\rangle = |\text{fermion}\rangle \qquad \mathcal{S} |\text{fermion}\rangle = |\text{boson}\rangle$

Methodolog

Results

- $^{\rm Interpretation} \bullet \ {\rm Strong} \ {\rm production} \ {\rm of} \ {\rm SUSY}$
 - ▶ gluinos: fermionic superpartners of gluons
 - squarks: bosonic superpartners of quarks
 - Conservation of R-parity: pair production of sparticles, decay to LSP stable (lightest SUSY particle)

Introduction

Supersymmetry as a candidate for New Physics

• Symmetry whose generators transform bosonic states into fermionic ones and vice versa

Introduction

 $\mathcal{S} |\text{boson}\rangle = |\text{fermion}\rangle \qquad \mathcal{S} |\text{fermion}\rangle = |\text{boson}\rangle$

Methodolo

Results

- $^{\rm Interpretation} \bullet \ {\rm Strong} \ {\rm production} \ {\rm of} \ {\rm SUSY}$
 - ▶ gluinos: fermionic superpartners of gluons
 - squarks: bosonic superpartners of quarks
 - Conservation of R-parity: pair production of sparticles, decay to LSP stable (lightest SUSY particle)
- \tilde{g} \tilde{g} \tilde{q} $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ \tilde{g} \tilde{q} \tilde{q} $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$

squark decay

- Signatures:
 - Quarks \Rightarrow large hadronic activity
 - ▶ LSP \Rightarrow large missing transverse energy E_T^{miss}

Introduction

Methodology

Results

Interpretation

Summary

1. M_{T2} Analysis

Introduction

Methodology

Results

Interpretation

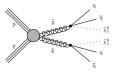
Summary

• Search for New Physics in the all-hadronic final states, with large missing transverse energy E_T^{miss}

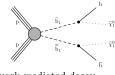
 \bullet Use the $\rm M_{T2}$ variable as a discovery variable

1. M_{T2} Analysis

- Introduction


- Use the M_{T2} variable as a discovery variable

missing transverse energy E_T^{miss}


• Constrain mass of strong sparticles within simplified SUSY models

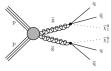
• Search for New Physics in the all-hadronic final states, with large

- Limited set of sparticles with given production and decay modes
- ▶ In this talk:

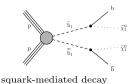
gluino-mediated decay

squark-mediated decay

1. M_{T2} Analysis


- Introduction
- Methodology
- Results
- Interpretation
- Use the M_{T2} variable as a discovery variable

missing transverse energy E_T^{miss}


• Constrain mass of strong sparticles within simplified SUSY models

• Search for New Physics in the all-hadronic final states, with large

- Limited set of sparticles with given production and decay modes
- ▶ In this talk:

gluino-mediated decay

- LHC data collected by CMS in 2016, 2017, 2018 at $\sqrt{s}{=}13~{\rm TeV}$
- Total integrated luminosity: 137.2 ${\rm fb}^{-1}$

Anne-Mazarine Lyon

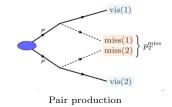
2. M_{T2} Variable

Introduction

Methodology

Results

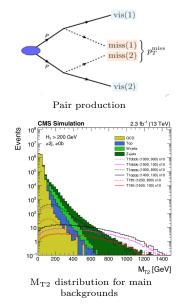
Interpretation


Summary

2. M_{T2} Variable

Introduction Methodology Results

Summary


• Measurement of the mass of pair-produced particles, both decaying into one visible and one invisible particle

2. M_{T2} Variable

Introduction Methodology Results Interpretation • Measurement of the mass of pair-produced particles, both decaying into one visible and one invisible particle

- Used as a discovery variable: New Physics expected in the tail of the distribution
- Allows to get rid of QCD background

In Event selection

- Introduction Methodology Results Interpretation
- Summary

- Phase space binning
- Estimation of the SM backgrounds
 - Assignment of the uncertainties
 - Signal extraction

Methodolog	SУ
------------	----

Methodol

methodolog	sy .			
Event selection	Binning	Background	Uncertainties	Signal extraction
tion missing transformed to the missing	ents of intere ransverse ene	ergy ia in order to g	-hadronic final st et rid of backgro	0
Signal s	election			
• At le	ast one jet)	
• H _T >	> 250 GeV		Large hadro	nic activity &

- $E_T^{\text{miss}} > 250 \text{ GeV}$ for $H_T < 1200 \text{ GeV}$ > 30 GeV > 1200 GeV
- $M_{T2} > 200 \text{ GeV for } H_T < 1500 \text{ GeV}$ > 400 GeV > 1500 GeV
- $\Delta \Phi^{\min} > 0.3$
- $\bullet \ |H_T^{\rm miss} E_T^{\rm miss}| < 0.5 \ E_T^{\rm miss}$
- Lepton vetoes

Large hadronic activity & missing transverse energy

QCD background rejection

EW background rejection

	Methodolog	gу			
	Event selection	Binning	Background	Uncertainties	Signal extraction
	2. Phase spa	ce binning			
Introduction		the events int	to regions base	ed on the value o	f H_T , N_j and N_b
Methodolog		oin these regi	ons in M_{T2}		
Results Interpretation	• Highly b	inned analysi	s (282 bins) \Rightarrow	> large phase spa	ce coverage
Summary		CMS Nb ₊		(13 TeV)	
		Z	$\rightarrow v\overline{v}$ $= W + jets$ $p quark = Multijet$	t H _T [575, 1200] GeV	
		≥4			
		3			

Binning in N_j and N_b in the medium H_T region

9 ≥10 Nj

Methodology							
	Event selection	Binning	Background	Uncertainties	Signal extraction		
Introduction	• In each b		M background te the counts con	ning from SM pr	ocesses using		
Methodolog Results Interpretation	• CRs are	regions ort	hogonal to the S	R: regions enrich	ned with SM		
Summary	0		to be estimated:				

a. Z invisible

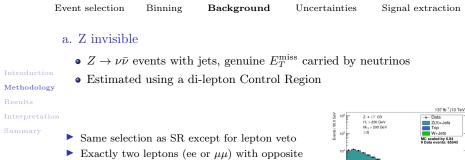
b. Lost lepton

c. QCD

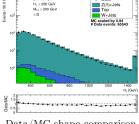
 ${\bf Methodology}$

Event selection	Binning	Background	Uncertainties	Signal extraction
a. Z invisible	;			

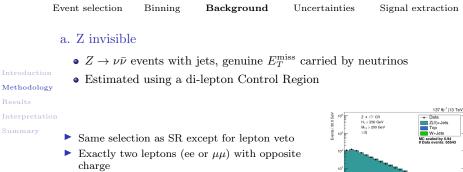
Introduction

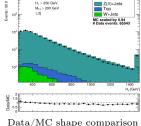

Methodology

Results

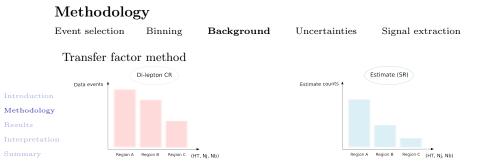

Interpretation

Summary

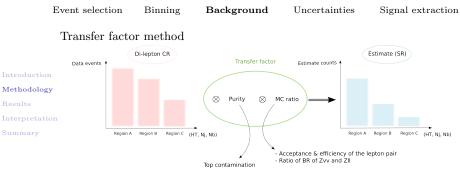

	Methodolog	gу			
	Event selection	Binning	Background	Uncertainties	Signal extraction
	a. Z invisible	<u>)</u>			
	• $Z \rightarrow \nu \bar{\nu}$ e	events with	jets, genuine $E_7^{\rm r}$	^{miss} carried by n	eutrinos
Introduction				, v	
Methodolog	у				
Results					
Interpretati	on				
Summary					

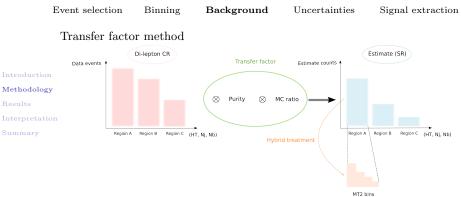

- charge
- $Z \to \nu \bar{\nu}$ kinematics
 - invariant mass of lepton peaking at Z mass
 - Lepton p_T vectorially added to E_T^{miss}
- Enriched in $Z \rightarrow ll$ events

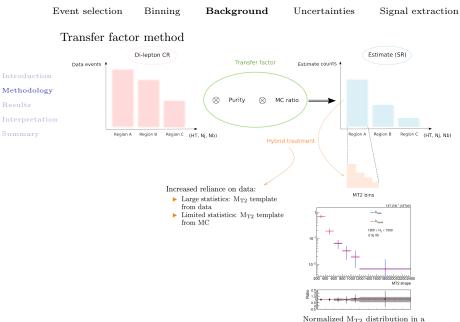
Data/MC shape comparison in the CR



- ► $Z \to \nu \bar{\nu}$ kinematics
 - invariant mass of lepton peaking at Z mass
 - Lepton p_T vectorially added to E_T^{miss}
- ▶ Enriched in $Z \rightarrow ll$ events




in the CR


• Transfer factor (TF) from CR to SR get background counts in the SR

Anne-Mazarine Lyon

given region

Methodol	logy
----------	------

	Event selection	Binning	Background	Uncertainties	Signal extraction
	b. Lost leptor	n			
Introduction	n				
Methodolog	у				

Result

Interpretation

Summary

	Methodolog	У			
	Event selection	Binning	Background	Uncertainties	Signal extraction
	b. Lost leptor	ı			
Introduction		t of accept	ance, not recons	structed, not ide	ntified or not
Methodology					
Results					
Interpretatio	on				
Summary					

	Methodolog	gу			
1	Event selection	Binning	Background	Uncertainties	Signal extraction
	b. Lost lepto	n			
duction	isolated	ut of accept	tance, not recons	structed, not idea	ntified or not
odology		d using a si	ingle-lepton CR		
pretation	n			8 10 ⁴ H ₇	137 fb ⁺ (13 TeV) 250 GeV 200 GeV
	 Same trigge lepton veto 	er and select	ion as SR except :		
	Exactly one	e lepton (e o	or μ)	103	

 \blacktriangleright Enriched in W+jets and $t\bar{t}$ events

Metho

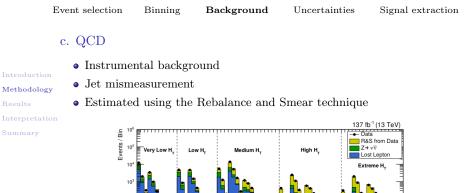
 ${
m Data/MC}$ shape comparison in the CR

Data/MC

• Transfer factor (TF) from CR to SR to get the background counts in the SR

1400

H, [GeV]


	Event selection	Binning	Background	Uncertainties	Signal extraction
	c. QCD				
Introductio	on				
Methodolo	gy				
Results					
Interpretat	ion				
Summary					

10²

10

Data/Prei

22224

	Event selection	Binning	Background	Uncertainties	Signal extraction
Introducti	on				
Methodolo	ogy				
Results					
Interpreta	tion				
Summary					

Event selection	Binning	Background	Uncertainties
-----------------	---------	------------	---------------

Signal extraction

4. Assignment of the uncertainties

Introduction	Z invisible			
	Source	Range[%]		
Methodology	Limited size of data control samples	5-100		
Results	Limited size of MC samples	0-50		
Interpretation	Lepton efficiency	0-5		
Interpretation	Jet Energy Scale	0-5		
Summary	Uncertainty in $R^{\rm SF/OF}$	0-5		
	M_{T2} shape uncertainty	0-40		

Lost lepton

Source	Range[%]
Limited size of data control samples	5-100
Limited size of MC samples	0-50
Lepton efficiency	0-10
τ efficiency	0-3
b tagging efficiency	0-3
tībb/tījj	0-25
μ_R and μ_F variation	0-5
Jet Energy Scale	0-5
M_T (lepton, \vec{p}_T^{miss}) selection efficiency	0-3
M_{T2} shape uncertainty (if k_{LL}) $\neq 1$	0-40

Binning

Background

Uncertainties

Z invisible

· · · · · ·					
Introduction	Source	Range[%]			
Methodology	Limited size of data control samples	5-100			
Results	Limited size of MC samples	0-50			
	Lepton efficiency	0-5			
Interpretation	Jet Energy Scale	0-5			
Summary	Uncertainty in $R^{\rm SF/OF}$	0-5			
	M_{T2} shape uncertainty	0-40			

• Statistical uncertainties dominant in extreme regions

Lost lepton

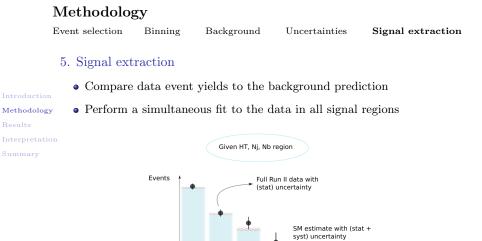
Source	Range[%]
Limited size of data control samples	5-100
Limited size of MC samples	0-50
Lepton efficiency	0-10
au efficiency	0-3
b tagging efficiency	0-3
$t\bar{t}b\bar{b}/t\bar{t}j\bar{j}$	0-25
μ_R and μ_F variation	0-5
Jet Energy Scale	0-5
M_T (lepton, \vec{p}_T^{miss}) selection efficiency	0-3
M_{T2} shape uncertainty (if k_{LL}) $\neq 1$	0-40

Binning

Background

Uncertainties

Signal extraction


Z invisible

Introduction					
Introduction	Source	Range[%]			
Methodology	Limited size of data control samples	5-100			
Results	Limited size of MC samples	0-50			
	Lepton efficiency	0-5			
Interpretation	Jet Energy Scale	0-5			
Summary	Uncertainty in $R^{\rm SF/OF}$	0-5			
	M_{T2} shape uncertainty	0-40			

Lost lepton

Source	Range[%]
Limited size of data control samples	5-100
Limited size of MC samples	0-50
Lepton efficiency	0-10
τ efficiency	0-3
b tagging efficiency	0-3
tī bb/tījj	0-25
μ_R and μ_F variation	0-5
Jet Energy Scale	0-5
M_T (lepton, \vec{p}_T^{miss}) selection efficiency	0-3
M_{T2} shape uncertainty (if k_{LL}) $\neq 1$	0-40

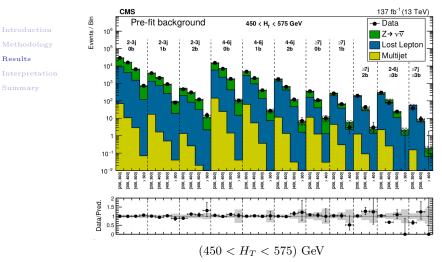
- Statistical uncertainties dominant in extreme regions
- Systematics: main contribution comes from the M_{T2} shape

▶ An excess of data would be a sign of New Physics

MT2 bins

Results

Introduction


Methodology

Results

Interpretation

Summary

Results

• Comparison of data and prediction in a given H_T region

Interpretation

Introduction

Methodology

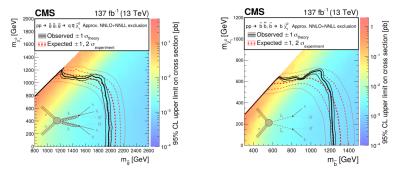
Results

Interpretation

Summary

Interpretation

 \blacktriangleright No significant excess of data over SM background has been observed


- \blacktriangleright Largest observed significance of 1.8σ
- Introduction
- Methodology
- Results
- Interpretation
- Summary

Interpretation

- ▶ No significant excess of data over SM background has been observed
- Largest observed significance of 1.8σ
- Introduction

Interpretation

- Interpreted in the context of simplified SUSY models
- Constrain masses of gluinos, squarks and LSP within those models

 $\bullet\,$ Exclusion limits improved of O(100)GeV compared to previous analysis exploiting 2016 data only

Summary

Introduction

Methodology

Results

Interpretation

Summary

Summary

M_{T2} analysis

Methodology

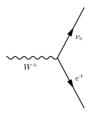
- Results
- Interpretation
- Summary
- Performed an inclusive search for strong SUSY
- Targeted full-hadronic with large missing energy final states
- M_{T2} used as a discovery variable
- Full Run II data studied

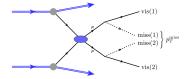
Conclusions

- No significant deviation from SM background observed
- $\bullet\,$ Limits on sparticles masses improved by O(100)GeV compared to the results with 2016 data only
- Paper under review by EPJC (arXiv:1909.03460)

Introduction		
Methodology		
Results		
Interpretation	Backup	
Summary	Баскар	
M_{T2}		
Purity		
Hybrid		
QCD		
Results		
Pulls		
Data		

Introduction M_{T2} variable


Reminder - Transverse mass


- Introduction Methodology Results
- Summary
- M_{T2} Purity Hybrid QCD Results

- Useful mean to measure mass of particle decaying into one visible and one invisible particle (e.g W boson)
- Kinematic endpoint at the searched mass

Generalization to M_{T2}

- Measure of the mass of pair-produced particles, both decaying into one visible and one invisible particle
- Minimization due to the fact that one can only measure the sum of the two missing transverse momenta

$$\mathbf{M}_{\mathrm{T2}}^{2} \equiv \min_{p_{T}^{\mathrm{miss}(1)} + p_{T}^{\mathrm{miss}(2)} = p_{T}^{\mathrm{miss}}} \left[\max\left\{ M_{T}^{2} \left(p_{T}^{\mathrm{vis}(1)}, p_{T}^{\mathrm{miss}(1)} \right), M_{T}^{2} \left(p_{T}^{\mathrm{vis}(2)}, p_{T}^{\mathrm{miss}(2)} \right) \right\} \right]$$

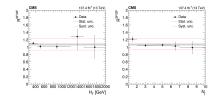
Background estimation

Z invisible

$$N_{Z \rightarrow \nu \nu}^{\rm SR} = N_{Z \rightarrow ll}^{\rm CR} \cdot P_{Z \rightarrow ll} \cdot R_{\rm MC}^{Z \rightarrow \nu \nu / Z \rightarrow ll} \cdot k_{\rm hybrid}$$

Purity

- Measure of the Top contamination in the di-lepton CR
- Estimated (in data) using two CRs: same flavour leptons (SF) and opposite flavour leptons (OF)

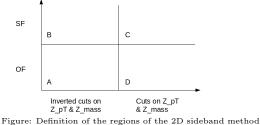

$$P_{Z \to ll} = \frac{N_{2l}^{\text{CR}} (\text{SF}) - N_{2l}^{\text{CR}} (\text{OF}) \text{R} (\text{SF/OF})}{N_{2l}^{\text{CR}} (\text{SF})}$$

• Consistent with 1 in all topological regions

R(SF/OF)

Purity

- Estimated in a tt-enriched sample (inverted di-lepton p_T and mass cuts) and applying the 2D sideband method
- Behaviour wrt kinematic variables well described by a constant $R(SF/OF) = 1.06 \pm 0.15_{Anne-Mazarine Lyon}$



Backup

Z purity in the di-lepton CR - 2D sideband method

- Estimation of the Top background using 2D sideband method (evaluated in data): implementation of four different CR regions (see sketch below)
 - \rightarrow regions A, B and D: $t\bar{t}$ -enriched regions
 - \rightarrow region C: Z-enriched region
- Assumption: contamination of Z in regions A, B and D negligible $(N_{Zll}^{A,B,D} \approx 0)$
 - If two axes are uncorrelated, we have $R(SF/OF)^{B/A} = R(SF/OF)^{C/D}$ which implies

$$N_{\rm Top} = N_{\rm Top}^C = \frac{N_{\rm Top}^B}{N_{\rm Top}^A} \cdot N_{\rm Top}^D \tag{1}$$

Anne-Mazarine Lyon

- Introduction
- Methodology
- Results

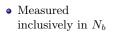
Interpretati

Summary

- M_{T2}
- Purity
- Hybrid
- QCD
- Result
- Pulls

Background estimation

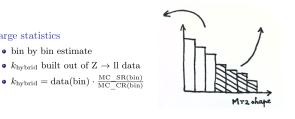
Z invisible


$$N_{Z \rightarrow \nu \nu}^{\rm SR} = N_{Z \rightarrow ll}^{\rm CR} \cdot P_{Z \rightarrow ll} \cdot R_{\rm MC}^{Z \rightarrow \nu \nu / Z \rightarrow ll} \cdot k_{\rm hybrid}$$

Hybrid shape

• Normalized M_{T2} shape per topological region: distribution of the estimate across the M_{T2} bins

Large statistics


bin by bin estimate

• Hybrid treatment: \rightarrow increase reliance on data as much as statistics allows it \rightarrow template normalized to unity

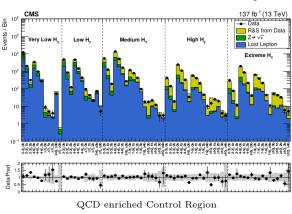
Limited statistics

- bins in the tail merged until the sum of the events is at least equal to 50
- k_{hybrid} built out of $Z \rightarrow \nu \nu$ MC
- $k_{\text{hybrid}} = \text{MC}_{\text{SR}}(\text{bin}) \cdot \frac{\int \text{MC}_{\text{SR}}}{\int \text{MC}_{\text{CR}}} \cdot \frac{\int \text{data}}{\int \text{MC}_{\text{SR}}}$

Background estimation QCD

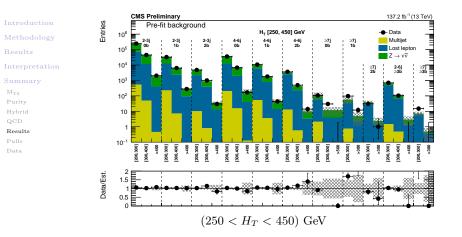
How to estimate this background?

- \rightarrow Two steps procedure:
- Rebalance multijet events by adjusting the jet p_T in a way to minimize the transverse missing energy
 - 2 Smear many times according to templates of $p_T^{\text{reco}}/p_T^{\text{gen}}$


Puri

TT--b--

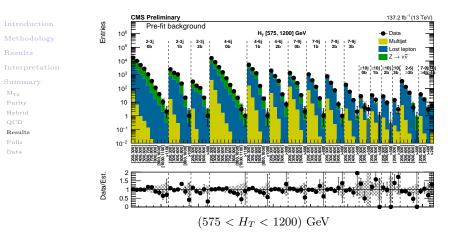
- QCD
- Resul

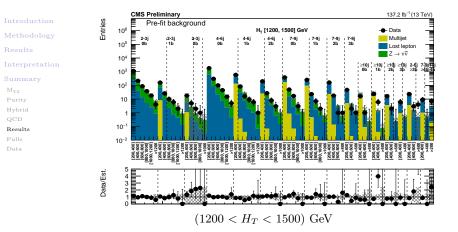

Pulls

Data



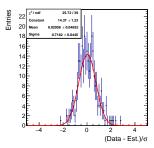
Anne-Mazarine Lyon


Backup Results - very low HT region


Backup Results - low HT region


Backup Results - medium HT region

Backup Results - high HT region


Backup Results - extreme HT region

Interpretation Residuals and significance

▶ No significant excess of data over SM background has been observed

Residuals troduction throduction ethodology suits terpretation Residuals computed in each bin mmary rr arity ybrid CD suits alls ata $r = \frac{\text{Data} - \text{Estimate}}{\sqrt{\sigma_{\text{Data}}^2 + \sigma_{\text{Estimate}}^2}}$ • Distribution well described by a Gaussian with mean around 0

Significance

- Computation of the significance of the signals of interest
 - ▶ simultaneous fit of Sig+Bkg in all bins
 - \blacktriangleright profile likelihood ratio with asymptotic approximation
- Largest observed significance: 1.8 σ (for T1 with M=2700GeV and m=1100GeV)

Backup Data treatment

Samples

- Introduction
- Methodology
- Results
- Interpretation

Summary

- $\rm M_{T2}$
- Purity
- Hybrid
- QCD
- Result
- Pulls

• Data:

- 2016: Nano14Dec2018
- 2010: Nano14Dec2018
 2017: Nano14Dec2018
- 2018: NanoAODv4-Priv-Mo19JECs (private production)
- Background:
 - 2016: Summer16 (94X MiniAODDv3)
 - 2017: Fall17 (94X MiniAODv2)
 - 2018: Autumn18 (102X)
- Signal: 94X Fast Simulation

Primary datasets

- Signal region: JetHT, HTMHT, MET
- Control region: additionally SingleMuon, SingleElectron, DoubleMuon, DoubleEG, MuonEG An

Triggers

2016:

- $p_{\rm T}^{\rm miss} > 120\,{
 m GeV}$ and $H_{\rm T}^{\rm miss} > 120\,{
 m GeV}$ or
- $H_{\rm T} > 300\,{\rm GeV}$ and $p_{\rm T}^{\rm miss} > 110\,{\rm GeV}$ or
- $H_{\rm T} > 900\,{\rm GeV}$ or jet $p_{\rm T} > 450\,{\rm GeV}$

2017 and 2018:

$$\begin{split} p_T^{\rm miss} &> 120\,{\rm GeV} \text{ and } H_T^{\rm miss} > 120\,{\rm GeV} \text{ or } \\ H_T &> 60\,{\rm GeV} \text{ and } p_T^{\rm miss} > 120\,{\rm GeV} \text{ and } H_T^{\rm miss} > 120\,{\rm GeV} \text{ or } \\ H_T &> 500\,{\rm GeV} \text{ and } p_T^{\rm miss} > 100\,{\rm GeV} \text{ and } H_T^{\rm miss} > 100\,{\rm GeV} \text{ or } \\ H_T &> 800\,{\rm GeV} \text{ and } p_T^{\rm miss} > 75\,{\rm GeV} \text{ or } \\ H_T &> 1050\,{\rm GeV} \text{ or jet } p_T > 500\,{\rm GeV} \end{split}$$

Data quality issues

- 2016+2017: L1 pre-firing inefficiency (minor effect)
- 2017: ECAL Endcap MET issue (followed recommended recipe)
- 2018: HEM failure (large effect on QCD background, veto jets or leptons in the concerned region)

Backup Object reconstruction

Introduction

- Methodology
- Results

Interpretation

Summary

- M_{T2}
- Puri
- Hybri
- QCD
- Results
- Pulls
- Data

Jets

- ak4 PF-CHS Jets
- $p_T > 30 \text{GeV}, |\eta| < 4.7$
- $|\eta| < 2.4$ for N_j , N_b , H_T , M_{T2}
- Jet cleaning
 - Reject event if any jet fails jet ID
 - For 1-jet region: special "monojet" ID
 - Reject event if jet with *p_T* >30GeV in HEM region for affected 2018 dataset

b-Jets

- DeepCSV Medium working point
- $p_T > 20 \text{GeV}$

MET

- type-1 corrected MET
- for 2017: using MET "v2" recipe

Leptons

• $p_T > 10 \text{GeV}, |\eta| < 2.4$

Electrons

- POG veto ID (loose for dilep CR), miniRelIso<0.1
- d0<0.05/0.10cm, dz<0.10/0.20cm (barrel/endcap)

Muons

POG loose ID, miniRelIso<0.2
 d0<0.2, dz<0.5

Isolated tracks (for Veto)

- PF muons/PF electrons, $p_T > 5$ GeV, |dz|<0.1cm, relTrackIso<0.2
- $\bullet~$ PF charged hadrons, $p_T > 10 {\rm GeV}, $|dz| < 0.1 {\rm cm}, {\rm relTrackIso} < 0.1, $|\eta| < 2.4$}$
- M_T(cand, MET)<100GeV</p>

Miscellaneous

MET filters: all recommended Jet energy corrections:

- 2016: Summer16_07Aug2017_V11
- 2017: Fall17_17Nov2017_V32
- 2018: Autumn18_V3

Backup Signal uncertainties

meroduction		
Methodology	Source	Typical values
Results	Integrated luminosity	2.3-5
Interpretation	Limited size of MC samples	1-100
Summary M _{T2}	Renormalization and factorization scales	5
Purity	ISR modeling	0-30
Hybrid QCD	b-tagging efficiency, heavy flavours	0-40
Results	b-tagging efficiency, light flavours	0-20
Pulls Data	Lepton efficiency	0-20
Dutu	Jet energy scale	5
	Fast simulation p_T^{miss} modeling	0-5
	Fast simulation pileup modeling	4.6