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The Standard Model
Higgs boson
● Higgs mechanism generates mass of fermions & 

weak gauge bosons
● coupling to fermions proportional to mass of 

fermion

Top quark
● spin ½ fermion
● heaviest elementary particle described by 

Standard model (SM)
→ strongest coupling to Higgs boson

Direct measurement of Top-Higgs Yukawa coupling crucial test of the SM
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The ttH(bb) process 
ttH production 
direct measurement of 
Top-Higgs coupling

H     bb
largest branching ratio
→ reasonable rates

semi-leptonic (SL)
W decay
suppression of QCD 
background
→ tt+jets dominant
     background

ggF 48.6 pb

VBF 3.78 pb

WH 1.37 pb

ZH 0.88 pb

ttH 0.50 pb
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The CMS Detector

all sub-detectors of CMS experiment needed for ttH(bb) measurement



C. Reissel 5

Analysis Strategy

MC 
Simulation

Data

Reconstruction

Filtering
● objects 

(e.g. muon pt)

● event 
(e.g. number of jets)

Classifier
Calculation

(variable for optimal 
signal-to-background 
discrimination)

Application of
Corrections &
Calculation of 
Uncertainties
(e.g. different efficiencies 
in simulation & data, 
cross section calculation)

3.2 "

central
5.45 "

analysis specific
→ development of new analysis framework 
based on arrays suitable for GPU usage

→ speed up by several orders of magnitude
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Challenges
signal

dominant 
background

● Irreducible tt+bb background with final state 
being indistinguishable from signal

● Background simulation comes with large theory 
modelling uncertainties

● large number of jets in final state:
assignment of jets to partons not trivial
→ combinatorial background

● information lost: significant amount of events 
cannot be fully reconstructed because jets are 
out of acceptance
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Current Strategy
● events are classified according to number of jets, number of btagged jets and 

output node of ANN (artificial neural network) → results in 3x6 = 18 categories

● inputs to ANN: kinematics of leptons, jets and missing transverse energy, but also 
high-level variables (e.g. event shape or Matrix-Element Method discriminant)

● ANN discriminant output used also as final 
discriminant in fit

event # jets

0.4

ANN
4 jets

ANN
≥ 6 jets

ANN
5 jets

5

≥ 6

4

0.2

0.1

ttH

ttbb

ttLF

...
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Current Status
● simultaneous binned likelihood fit in all 

analysis categories optimizing the signal 
strength modifier μ = σ/σ

SM 
(σ: cross section)

● results compatible with SM expectation of 
μ=1

● evidence for ttH(bb) found (3.9σ), aiming 
for discovery (5σ)

● full ttH analysis combining Higgs boson 
decays in different channels observed with 
5σ significance
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Going beyond

● Run III & beyond: amount of data taken by CMS experiment will increase

● Important high-level variables are time consuming in computation 
(e.g. Matrix-Element variable takes up to 15min on single CPU per event)

● development of neural networks aiming at modeling the full event kinematics 
using mainly low level variables

● Model built on:

● 4-momenta of all reconstructed objects (jet, lepton, MET)

● for jets: b tagging information

● solving combinatorics with the help of modern machine learning algorithms



C. Reissel 10

Attention mechanism

K.Xu et. al: Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

● origin in image recognition and translation

● focus on special region of input phase space

● interpretation as a vector of importance weights

● application for ttH(bb): solve combinations by making a Deep Neural Network 
(DNN) learn how important a jet combination is in order to distinguish signal and 
background

https://arxiv.org/abs/1502.03044
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COBRA architecture
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ROC curves
● Receiver operating characteristic (ROC) curves 

visualize discrimination power of discriminant

● Overall comparison often done with Area Under 
Curve (AUC)
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Results

● discrimination power of COBRA with 2017 CMS simulation samples 
promising

● further analysis of DNN architecture needed

multi classifier

binary classifier
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Ongoing work
● attention weights of COBRA can give us insights in what the DNN learns

→ unravel the black box of the DNN

● use attention information in order to reconstruct Higgs candidate or Top 
candidate

● approach can be transferred to events in which Top quark system decays di-
leptonic or fully hadronic

mass of dijet pair linked to Higgs 
boson peaks at approx. m

Higgs
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Summary
● ttH(bb) process is important test of SM 

(direct access to the Top-Higgs Yukawa coupling)

● Challenging analysis due to irreducible tt+bb background 
& large number of jets in final state (combinatorial background)

● Current results by CMS in agreement with SM prediction, aiming for 
discovery

● high-level variables computationally expensive 
→ development of new COBRA DNN based only on basic object kinematics

● Fast evaluation of DNN with newly developed framework able to run on 
GPUs 

● further studies ongoing in order to understand & use COBRA
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Backup
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Matrix-Element Method
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Post-fit ANN discriminant
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hepaccelerate framework
● simplified, fast analysis software based on arrays
● able to run whole analysis on GPUs 

→ perfectly suitable for modern machine learning (ML) applications
● fast iterations of analysis → easy optimization of ML classifiers 

GPU speed up by factor of 7 
with respect to CPU

DNN (COBRA): approx. 745.000 pre-trained 
weights based on 92 inputs


