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➤ Top quark: Heaviest elementary particle known so far  
mt  ≃ 173 GeV (Gold Atom Mass ~ 197 u ~183.21 GeV). 
Strong coupling with the Higgs Boson

through gluon-gluon fusion and for the H → γγ decay
mode [6] suggests that the Higgs boson coupling to top
quarks is SM-like, since the quantum loops in these
processes include top quarks. However, non-SM particles
in the loops could introduce terms that compensate for, and
thus mask, other deviations from the SM. A measurement
of the production rate of the tree-level tt̄H process can
provide evidence for, or against, such new-physics
contributions.
The central feature of the CMS apparatus is a super-

conducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter, and a brass and scintillator
hadron calorimeter, each composed of a barrel and two end
cap sections. Forward calorimeters extend the pseudora-
pidity coverage provided by the barrel and end cap
detectors. Muons are detected in gas-ionization chambers
embedded in the steel flux-return yoke outside the solenoid.
A detailed description of the CMS detector can be found
in Ref. [5].
Events of interest are selected using a two-tiered trigger

system [25] based on custom hardware processors and a
farm of commercial processors running a version of the full
reconstruction software optimized for speed. Offline, a
particle-flow algorithm [26] is used to reconstruct and
identify each particle in an event based on a combination
of information from the various CMS subdetectors.
Additional identification criteria are employed to improve

purities and define the final samples of candidate electrons,
muons, hadronically decaying τ leptons (τh ) [27,28], and
photons. Jets are reconstructed from particle-flow candi-
dates using the anti-kT clustering algorithm [29] imple-
mented in the FASTJET package [30]. Multivariate
algorithms [31,32] are used to identify (tag) jets arising
from the hadronization of bottom quarks (b jets) and
discriminate against gluon and light flavor quark jets.
The algorithms utilize observables related to the long
lifetimes of hadrons containing b quarks and the relatively
larger particle multiplicity and mass of b jets compared to
light flavor quark jets. The τh identification is based on the
reconstruction of the hadronic τ decay modes τ− → h−ντ,
h−π0ντ, h−π0π0ντ, and h−hþh−ντ (plus the charge con-
jugate reactions), where h" denotes either a charged pion or
kaon. More details about the reconstruction procedures are
given in Refs. [10–15].
The 13 TeV data employed for the current study were

collected in 2016 and correspond to an integrated lumi-
nosity of up to 35.9 fb−1 [33]. The 7 and 8 TeV data,
collected in 2011 and 2012, correspond to integrated
luminosities of up to 5.1 and 19.7 fb−1 [34], respectively.
The 13 TeV analyses are improved relative to the 7 and
8 TeV studies in that they employ triggers with higher
efficiencies, contain improvements in the reconstruction
and background-rejection methods, and use more precise
theory calculations to describe the signal and the back-
ground processes. For the 7, 8, and 13 TeV data, the
theoretical calculations of Ref. [35] for Higgs boson
production cross sections and branching fractions are used
to normalize the expected signal yields.
The event samples are divided into exclusive categories

depending on the multiplicity and kinematic properties of
reconstructed electrons, muons, τh candidates, photons,
jets, and tagged b jets in an event. Samples of simulated
events based on Monte Carlo event generators, with
simulation of the detector response based on the GEANT4

[36] suite of programs, are used to evaluate the detector
acceptance and optimize the event selection for each
category. In the analysis of data, the background is, in
general, evaluated from data control regions. When this is
not feasible, either because the background process has a
very small cross section or a control region depleted of
signal events cannot be identified, the background is
evaluated from simulation with a systematic uncertainty
assigned to account for the known model dependence.
Multivariate algorithms [37–41] based on deep neural
networks, boosted decision trees, and matrix element
calculations are used to reduce backgrounds.
At 13 TeV, we search for tt̄H production in the H → bb̄

decay mode by selecting events with at least three tagged b
jets and with zero leptons [11], one lepton [12], or an
opposite-sign lepton pair [12], where “lepton” refers to an
electron or muon candidate. A search for tt̄H production in
the H → γγ decay mode is performed in events with two
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FIG. 1. Example tree-level Feynman diagrams for the pp →
tt̄H production process, with g a gluon, q a quark, t a top quark,
and H a Higgs boson. For the present study, we consider Higgs
boson decays to a pair ofW bosons, Z bosons, photons, τ leptons,
or bottom quark jets.
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FIG. 1. Example tree-level Feynman diagrams for the pp →
tt̄H production process, with g a gluon, q a quark, t a top quark,
and H a Higgs boson. For the present study, we consider Higgs
boson decays to a pair ofW bosons, Z bosons, photons, τ leptons,
or bottom quark jets.
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reconstructed photons in combination with reconstructed
electrons or muons, jets, and tagged b jets [13]. The signal
yield is extracted from a fit to the diphoton invariant mass
spectrum. Events with combinations of jets and tagged b
jets and with two same-sign leptons, three leptons, or four
leptons are used to search for tt̄H production in the
H → τþτ−, WW", or ZZ" decay modes [10,14], where
in this case “lepton” refers to an electron, muon, or τh
candidate (the asterisk denotes an off-shell particle). The
searches in the different decay channels are statistically
independent from each other. Analogous searches have
been performed with the 7 and 8 TeV data [15].
The presence of a tt̄H signal is assessed by performing a

simultaneous fit to the data from the different decay modes
and also from the different c.m. energies as described
below. A detailed description of the statistical methods can
be found in Ref. [42]. The test statistic q is defined as the
negative of twice the logarithm of the profile likelihood
ratio [42]. Systematic uncertainties are incorporated
through the use of nuisance parameters treated according
to the frequentist paradigm. The ratio between the nor-
malization of the tt̄H production process and its SM
expectation [35], defined as the signal strength modifier
μtt̄H, is a freely floating parameter in the fit. The SM
expectation is evaluated assuming the combined ATLAS

and CMS value for the mass of the Higgs boson, which is
125.09 GeV [43]. We consider the five Higgs boson decay
modes with the largest expected event yields, namely,
H → WW", ZZ", γγ, τþτ−, and bb̄. Other Higgs boson
decay modes and production processes, including pp →
tH þ X (or t̄H þ X), with X a light flavor quark or W
boson, are treated as backgrounds and normalized using the
predicted SM cross sections, subject to the corresponding
uncertainties.
The measured values of the five independent signal

strength modifiers, corresponding to the five decay chan-
nels considered, are shown in the upper section of Fig. 2
along with their 1 and 2 standard deviation confidence
intervals obtained in the asymptotic approximation [44].
Numerical values are given in Table I. The individual
measurements are seen to be consistent with each other
within the uncertainties.
We also perform a combined fit, using a single signal

strength modifier μtt̄H, that simultaneously scales the tt̄H
production cross sections of the five decay channels
considered, with all Higgs boson branching fractions fixed
to their SM values [35]. Besides the five decay modes

TABLE I. Best fit value, with its uncertainty, of the tt̄H signal
strength modifier μtt̄H, for the five individual decay channels
considered, the combined result for 7þ 8 TeV alone and for
13 TeV alone, and the overall combined result. The total
uncertainties are decomposed into their statistical, experimental
systematic, background theory systematic, and signal theory
components. The numbers in parentheses are those expected
for μtt̄H ¼ 1.

Uncertainty

Parameter Best fit Statistical
Experi-
mental

Background
theory

Signal
theory

μWW"

tt̄H

1.97þ0.71
−0.64

þ0.42
−0.41

þ0.46
−0.42

þ0.21
−0.21

þ0.25
−0.12

ð þ0.57
−0.54 Þ ð þ0.39

−0.38 Þ ð þ0.36
−0.34 Þ ð þ0.17

−0.17 Þ ðþ0.12
−0.03 Þ

μZZ
"

tt̄H

0.00þ1.30
−0.00

þ1.28
−0.00

þ0.20
−0.00

þ0.04
−0.00

þ0.09
−0.00

ð þ2.89
−0.99 Þ ð þ2.82

−0.99 Þ ð þ0.51
−0.00 Þ ð þ0.15

−0.00 Þ ð þ0.27
−0.00 Þ

μγγtt̄H
2.27þ0.86

−0.74
þ0.80
−0.72

þ0.15
−0.09

þ0.02
−0.01

þ0.29
−0.13

ð þ0.73
−0.64 Þ ð þ0.71

−0.64 Þ ð þ0.09
−0.04 Þ ð þ0.01

−0.00 Þ ð þ0.13
−0.05 Þ

μτ
þτ−
tt̄H

0.28þ1.09
−0.96

þ0.86
−0.77

þ0.64
−0.53

þ0.10
−0.09

þ0.20
−0.19

ð þ1.00
−0.89 Þ ð þ0.83

−0.76 Þ ð þ0.54
−0.47 Þ ð þ0.09

−0.08 Þ ð þ0.14
−0.01 Þ

μbb̄tt̄H
0.82þ0.44

−0.42
þ0.23
−0.23

þ0.24
−0.23

þ0.27
−0.27

þ0.11
−0.03

ð þ0.44
−0.42 Þ ð þ0.23

−0.22 Þ ð þ0.24
−0.23 Þ ð þ0.26

−0.27 Þ ð þ0.11
−0.04 Þ

μ7þ8 TeV
tt̄H

2.59þ1.01
−0.88

þ0.54
−0.53

þ0.53
−0.49

þ0.55
−0.49

þ0.37
−0.13

ð þ0.87
−0.79 Þ ð þ0.51

−0.49 Þ ð þ0.48
−0.44 Þ ð þ0.50

−0.44 Þ ð þ0.14
−0.02 Þ

μ13 TeV
tt̄H

1.14þ0.31
−0.27

þ0.17
−0.16

þ0.17
−0.17

þ0.13
−0.12

þ0.14
−0.06

ð þ0.29
−0.26 Þ ð þ0.16

−0.16 Þ ð þ0.17
−0.16 Þ ð þ0.13

−0.12 Þ ð þ0.11
−0.05 Þ

μtt̄H
1.26þ0.31

−0.26
þ0.16
−0.16

þ0.17
−0.15

þ0.14
−0.13

þ0.15
−0.07

ð þ0.28
−0.25 Þ ð þ0.15

−0.15 Þ ð þ0.16
−0.15 Þ ð þ0.13

−0.12 Þ ð þ0.11
−0.05 Þ
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FIG. 2. Best fit value of the tt̄H signal strength modifier μtt̄H,
with its 1 and 2 standard deviation confidence intervals (σ), for
(upper section) the five individual decay channels considered,
(middle section) the combined result for 7þ 8 TeV alone and for
13 TeV alone, and (lower section) the overall combined result.
The Higgs boson mass is taken to be 125.09 GeV. For the
H → ZZ" decay mode, μtt̄H is constrained to be positive to
prevent the corresponding event yield from becoming negative.
The SM expectation is shown as a dashed vertical line.

PHYSICAL REVIEW LETTERS 120, 231801 (2018)

231801-3

μtt̄H = 1.26 +0.31
−0.26

reconstructed photons in combination with reconstructed
electrons or muons, jets, and tagged b jets [13]. The signal
yield is extracted from a fit to the diphoton invariant mass
spectrum. Events with combinations of jets and tagged b
jets and with two same-sign leptons, three leptons, or four
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FIG. 2. Best fit value of the tt̄H signal strength modifier μtt̄H,
with its 1 and 2 standard deviation confidence intervals (σ), for
(upper section) the five individual decay channels considered,
(middle section) the combined result for 7þ 8 TeV alone and for
13 TeV alone, and (lower section) the overall combined result.
The Higgs boson mass is taken to be 125.09 GeV. For the
H → ZZ" decay mode, μtt̄H is constrained to be positive to
prevent the corresponding event yield from becoming negative.
The SM expectation is shown as a dashed vertical line.
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reconstructed photons in combination with reconstructed
electrons or muons, jets, and tagged b jets [13]. The signal
yield is extracted from a fit to the diphoton invariant mass
spectrum. Events with combinations of jets and tagged b
jets and with two same-sign leptons, three leptons, or four
leptons are used to search for tt̄H production in the
H → τþτ−, WW", or ZZ" decay modes [10,14], where
in this case “lepton” refers to an electron, muon, or τh
candidate (the asterisk denotes an off-shell particle). The
searches in the different decay channels are statistically
independent from each other. Analogous searches have
been performed with the 7 and 8 TeV data [15].
The presence of a tt̄H signal is assessed by performing a

simultaneous fit to the data from the different decay modes
and also from the different c.m. energies as described
below. A detailed description of the statistical methods can
be found in Ref. [42]. The test statistic q is defined as the
negative of twice the logarithm of the profile likelihood
ratio [42]. Systematic uncertainties are incorporated
through the use of nuisance parameters treated according
to the frequentist paradigm. The ratio between the nor-
malization of the tt̄H production process and its SM
expectation [35], defined as the signal strength modifier
μtt̄H, is a freely floating parameter in the fit. The SM
expectation is evaluated assuming the combined ATLAS

and CMS value for the mass of the Higgs boson, which is
125.09 GeV [43]. We consider the five Higgs boson decay
modes with the largest expected event yields, namely,
H → WW", ZZ", γγ, τþτ−, and bb̄. Other Higgs boson
decay modes and production processes, including pp →
tH þ X (or t̄H þ X), with X a light flavor quark or W
boson, are treated as backgrounds and normalized using the
predicted SM cross sections, subject to the corresponding
uncertainties.
The measured values of the five independent signal

strength modifiers, corresponding to the five decay chan-
nels considered, are shown in the upper section of Fig. 2
along with their 1 and 2 standard deviation confidence
intervals obtained in the asymptotic approximation [44].
Numerical values are given in Table I. The individual
measurements are seen to be consistent with each other
within the uncertainties.
We also perform a combined fit, using a single signal

strength modifier μtt̄H, that simultaneously scales the tt̄H
production cross sections of the five decay channels
considered, with all Higgs boson branching fractions fixed
to their SM values [35]. Besides the five decay modes

TABLE I. Best fit value, with its uncertainty, of the tt̄H signal
strength modifier μtt̄H, for the five individual decay channels
considered, the combined result for 7þ 8 TeV alone and for
13 TeV alone, and the overall combined result. The total
uncertainties are decomposed into their statistical, experimental
systematic, background theory systematic, and signal theory
components. The numbers in parentheses are those expected
for μtt̄H ¼ 1.

Uncertainty

Parameter Best fit Statistical
Experi-
mental

Background
theory

Signal
theory

μWW"

tt̄H

1.97þ0.71
−0.64

þ0.42
−0.41

þ0.46
−0.42

þ0.21
−0.21

þ0.25
−0.12

ð þ0.57
−0.54 Þ ð þ0.39

−0.38 Þ ð þ0.36
−0.34 Þ ð þ0.17

−0.17 Þ ðþ0.12
−0.03 Þ

μZZ
"

tt̄H

0.00þ1.30
−0.00

þ1.28
−0.00

þ0.20
−0.00

þ0.04
−0.00

þ0.09
−0.00

ð þ2.89
−0.99 Þ ð þ2.82

−0.99 Þ ð þ0.51
−0.00 Þ ð þ0.15

−0.00 Þ ð þ0.27
−0.00 Þ

μγγtt̄H
2.27þ0.86

−0.74
þ0.80
−0.72

þ0.15
−0.09

þ0.02
−0.01

þ0.29
−0.13

ð þ0.73
−0.64 Þ ð þ0.71

−0.64 Þ ð þ0.09
−0.04 Þ ð þ0.01

−0.00 Þ ð þ0.13
−0.05 Þ

μτ
þτ−
tt̄H

0.28þ1.09
−0.96

þ0.86
−0.77

þ0.64
−0.53

þ0.10
−0.09

þ0.20
−0.19

ð þ1.00
−0.89 Þ ð þ0.83

−0.76 Þ ð þ0.54
−0.47 Þ ð þ0.09

−0.08 Þ ð þ0.14
−0.01 Þ

μbb̄tt̄H
0.82þ0.44

−0.42
þ0.23
−0.23

þ0.24
−0.23

þ0.27
−0.27

þ0.11
−0.03

ð þ0.44
−0.42 Þ ð þ0.23

−0.22 Þ ð þ0.24
−0.23 Þ ð þ0.26

−0.27 Þ ð þ0.11
−0.04 Þ

μ7þ8 TeV
tt̄H

2.59þ1.01
−0.88

þ0.54
−0.53

þ0.53
−0.49

þ0.55
−0.49

þ0.37
−0.13

ð þ0.87
−0.79 Þ ð þ0.51

−0.49 Þ ð þ0.48
−0.44 Þ ð þ0.50

−0.44 Þ ð þ0.14
−0.02 Þ

μ13 TeV
tt̄H

1.14þ0.31
−0.27

þ0.17
−0.16

þ0.17
−0.17

þ0.13
−0.12

þ0.14
−0.06

ð þ0.29
−0.26 Þ ð þ0.16

−0.16 Þ ð þ0.17
−0.16 Þ ð þ0.13

−0.12 Þ ð þ0.11
−0.05 Þ

μtt̄H
1.26þ0.31

−0.26
þ0.16
−0.16

þ0.17
−0.15

þ0.14
−0.13

þ0.15
−0.07

ð þ0.28
−0.25 Þ ð þ0.15

−0.15 Þ ð þ0.16
−0.15 Þ ð þ0.13

−0.12 Þ ð þ0.11
−0.05 Þ
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FIG. 2. Best fit value of the tt̄H signal strength modifier μtt̄H,
with its 1 and 2 standard deviation confidence intervals (σ), for
(upper section) the five individual decay channels considered,
(middle section) the combined result for 7þ 8 TeV alone and for
13 TeV alone, and (lower section) the overall combined result.
The Higgs boson mass is taken to be 125.09 GeV. For the
H → ZZ" decay mode, μtt̄H is constrained to be positive to
prevent the corresponding event yield from becoming negative.
The SM expectation is shown as a dashed vertical line.
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μtt̄H = 1.26 +0.31
−0.26

reconstructed photons in combination with reconstructed
electrons or muons, jets, and tagged b jets [13]. The signal
yield is extracted from a fit to the diphoton invariant mass
spectrum. Events with combinations of jets and tagged b
jets and with two same-sign leptons, three leptons, or four
leptons are used to search for tt̄H production in the
H → τþτ−, WW", or ZZ" decay modes [10,14], where
in this case “lepton” refers to an electron, muon, or τh
candidate (the asterisk denotes an off-shell particle). The
searches in the different decay channels are statistically
independent from each other. Analogous searches have
been performed with the 7 and 8 TeV data [15].
The presence of a tt̄H signal is assessed by performing a

simultaneous fit to the data from the different decay modes
and also from the different c.m. energies as described
below. A detailed description of the statistical methods can
be found in Ref. [42]. The test statistic q is defined as the
negative of twice the logarithm of the profile likelihood
ratio [42]. Systematic uncertainties are incorporated
through the use of nuisance parameters treated according
to the frequentist paradigm. The ratio between the nor-
malization of the tt̄H production process and its SM
expectation [35], defined as the signal strength modifier
μtt̄H, is a freely floating parameter in the fit. The SM
expectation is evaluated assuming the combined ATLAS

and CMS value for the mass of the Higgs boson, which is
125.09 GeV [43]. We consider the five Higgs boson decay
modes with the largest expected event yields, namely,
H → WW", ZZ", γγ, τþτ−, and bb̄. Other Higgs boson
decay modes and production processes, including pp →
tH þ X (or t̄H þ X), with X a light flavor quark or W
boson, are treated as backgrounds and normalized using the
predicted SM cross sections, subject to the corresponding
uncertainties.
The measured values of the five independent signal

strength modifiers, corresponding to the five decay chan-
nels considered, are shown in the upper section of Fig. 2
along with their 1 and 2 standard deviation confidence
intervals obtained in the asymptotic approximation [44].
Numerical values are given in Table I. The individual
measurements are seen to be consistent with each other
within the uncertainties.
We also perform a combined fit, using a single signal

strength modifier μtt̄H, that simultaneously scales the tt̄H
production cross sections of the five decay channels
considered, with all Higgs boson branching fractions fixed
to their SM values [35]. Besides the five decay modes

TABLE I. Best fit value, with its uncertainty, of the tt̄H signal
strength modifier μtt̄H, for the five individual decay channels
considered, the combined result for 7þ 8 TeV alone and for
13 TeV alone, and the overall combined result. The total
uncertainties are decomposed into their statistical, experimental
systematic, background theory systematic, and signal theory
components. The numbers in parentheses are those expected
for μtt̄H ¼ 1.

Uncertainty

Parameter Best fit Statistical
Experi-
mental

Background
theory

Signal
theory
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−0.64

þ0.42
−0.41
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−0.99 Þ ð þ2.82

−0.99 Þ ð þ0.51
−0.00 Þ ð þ0.15

−0.00 Þ ð þ0.27
−0.00 Þ
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2.27þ0.86

−0.74
þ0.80
−0.72

þ0.15
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þ0.02
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−0.13
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0.28þ1.09
−0.96

þ0.86
−0.77

þ0.64
−0.53

þ0.10
−0.09

þ0.20
−0.19

ð þ1.00
−0.89 Þ ð þ0.83

−0.76 Þ ð þ0.54
−0.47 Þ ð þ0.09

−0.08 Þ ð þ0.14
−0.01 Þ

μbb̄tt̄H
0.82þ0.44

−0.42
þ0.23
−0.23

þ0.24
−0.23

þ0.27
−0.27

þ0.11
−0.03

ð þ0.44
−0.42 Þ ð þ0.23

−0.22 Þ ð þ0.24
−0.23 Þ ð þ0.26

−0.27 Þ ð þ0.11
−0.04 Þ

μ7þ8 TeV
tt̄H

2.59þ1.01
−0.88

þ0.54
−0.53

þ0.53
−0.49

þ0.55
−0.49

þ0.37
−0.13

ð þ0.87
−0.79 Þ ð þ0.51

−0.49 Þ ð þ0.48
−0.44 Þ ð þ0.50

−0.44 Þ ð þ0.14
−0.02 Þ

μ13 TeV
tt̄H

1.14þ0.31
−0.27

þ0.17
−0.16

þ0.17
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þ0.13
−0.12

þ0.14
−0.06

ð þ0.29
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FIG. 2. Best fit value of the tt̄H signal strength modifier μtt̄H,
with its 1 and 2 standard deviation confidence intervals (σ), for
(upper section) the five individual decay channels considered,
(middle section) the combined result for 7þ 8 TeV alone and for
13 TeV alone, and (lower section) the overall combined result.
The Higgs boson mass is taken to be 125.09 GeV. For the
H → ZZ" decay mode, μtt̄H is constrained to be positive to
prevent the corresponding event yield from becoming negative.
The SM expectation is shown as a dashed vertical line.
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➡ Experimental uncertainty challenges the theory prediction.
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regions targeting tt̄W and the same-sign dilepton regions
considered in the combined fit. The measured values of the
signal strengths μtt̄Z and μtt̄W are reported in Table VII for
each channel separately and for the combined fit.
Agreement is observed for the measured values between
all the different fit configurations.
The measured signal strengths from the combined fit and

their uncertainties are converted to inclusive cross-section
measurements using the signal simulation described in
Sec. III and the central values of the theoretical predictions.
The results are: σtt̄Z ¼ 0.95" 0.08stat " 0.10syst pb ¼
0.95" 0.13 pb and σtt̄W ¼ 0.87" 0.13stat " 0.14syst pb ¼
0.87" 0.19 pb. Figure 13 shows a comparison of the fit
results with theoretical predictions, σthtt̄Z ¼ 0.88þ0.09

−0.11 pb
and σthtt̄W ¼ 0.60þ0.08

−0.07 pb, demonstrating good agreement
between the measured and predicted cross sections.

For the tt̄Z process, both the observed and the expected
significances are found to be much larger than five standard
deviations. For the tt̄W process, an excess of events over
the expected background-only hypothesis is found with an
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FIG. 12. Event yields in data compared with the results of the fit that extracts σtt̄Z and σtt̄W simultaneously in the regions targeting the
tt̄W process. The “Other” background summarizes all small SM backgrounds described in Sec. III. The shaded band represents the total
uncertainty.

TABLE VII. Measured signal strengths of tt̄Z and tt̄W for
different fit configurations and the combined fit. The uncertain-
ties include statistical and systematic components.

Fit configuration μtt̄Z μtt̄W

Combined 1.08" 0.14 1.44" 0.32
2l-OS 0.73" 0.28 $ $ $
3ltt̄Z 1.08" 0.18 $ $ $
2l-SS and 3ltt̄W $ $ $ 1.41" 0.33
4l 1.21" 0.29 $ $ $
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FIG. 13. The result of the simultaneous fit to the tt̄Z and tt̄W
cross sections along with the 68% and 95% confidence level
(C.L.) contours. The cross shows the SM calculations and their
uncertainties, including renormalization and factorization scale
uncertainties as well as uncertainties including αS variations.
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Theory Prediction:

➡ Need to go to higher theory precision: NNLO
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➤ “Technical complication”: 
 After steps 1 and 2, Loop and Real emission radiation 
contributions are still separately singular, but the sum of 
them is finite for well defined observables (i.e. Infrared Safe). 

➡ Extra ingredient needed: A “Recipe” for combining 
contributions numerically.

1. UV singularities: Fixed through renormalization. (standard) 

2. Initial State Infrared Singularities: Absorbed in parton 
distribution functions, PDF’s. (standard)
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HIGHER ORDER CORRECTIONS
NNLO:
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HIGHER ORDER CORRECTIONS
NNLO:

+

∫ dPSF+j

∫ dPSF+jj

2

2 Re( )

∫ dPSF 2 Re( )+
2

Double Real

Single Real + 
Loop

Two Loops

➡ Infrared Singularities consequently more involved.
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NLO:
➤ Tree-level Amplitudes: (Born, real emission radiation) 

Fully automatised. 

➤ One-Loop Amplitudes: Fully automatised. 

➤ Subtraction methods: Well established and fully 
automatised.

➡ Fully automatic NLO computations.
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NNLO:
➤ Tree-level Amplitudes: (Born, real emission radiation) 

Fully automatised. 

➤ One-Loop Amplitudes: Fully automatised. 

➤ Two-Loops Amplitudes: Generically not known (case 
by case calculation). 

➤ Subtraction methods: Different proposals  
(e.g. QT-subtraction).
➡ NNLO results available only for certain processes.
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TTH and TTZ:
➤ Tree and One-loop amplitudes available (in our 

implementation thanks to OpenLoops). 

➤ Two Loop amplitudes not known at the moment. 

➤ Handling of infrared singularities:

➡ Extension of the QT-subtraction method to 
tt+colorless currently under work: NLO validation 
completed and NNLO on the way.
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➤ Agreement with MadGaph5 
within sub-permill 
numerical precision for the 
inclusive cross section.

➤ Fully agreement in 
differential distributions 
within percent-level 
numerical precision.
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➤ Agreement with MadGaph5 
with a per-mill numerical 
precision for the inclusive 
cross section.

➤ Fully agreement in 
differential distributions 
within percent-level 
numerical precision (that 
could be lowered with more 
runtime of the MC).
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The only missing ingredient would be the two-loop 
amplitudes which, thanks to recent advances in numerical 
techniques, we might obtain in not too far a future.
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