

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Ultracold neutron production and extraction from the solid deuterium converter of the PSI UCN source

PhD Seminar 2019

Ingo Rienäcker on behalf of the PSI UCN group

Contents of this talk

1. What are ultracold neutrons and why are they useful for fundamental physics?

2. Ultracold neutron production (at PSI) and the challenges

3. Recent and upcoming studies to improve the performance of the PSI UCN source

Ultracold neutrons (UCN)

	Quantity	Value
Neutrons are called ultracold when they have very low (kinetic) energies	Energy	${\rm E_{kin}}\lesssim 300~{ m neV}$
	Velocity	v \lesssim 7.6 m/s
	Temperature	$T \lesssim 3.5 \text{ mK}$
	Wavelength	$\lambda \gtrsim 52 \text{ nm}$

UCNs are totally reflected at all angles of incidence from many materials... ... and are thus **storable** in material bottles for long times

Long storage times in principal only limited by the beta-decay lifetime

UCN in fundamental physics

Some experiments using UCN

- Neutron lifetime measurements to determine weak interaction parameters
- Search for cold dark matter candidates **axion** like particles
- Search for a permanent electric dipole moment of the neutron (nEDM)

nEDM collaboration here at PSI

Experiments with UCN are limited by statistics →Increase UCN output to improve experimental sensitivity

UCN production at PSI

The PSI UCN source

UCN extraction from solid D_2

How much time does it take for the UCN to escape from the D_2 ?

- Solid D_2 height ≈ 13 cm
- typical UCN velocities ≈ 4m/s
- \rightarrow extraction time \approx life time

UCN extraction from solid D_2

But UCN extraction time is increased by

1. elastic incoherent scattering

 \succ λ_{MFP} = (ρ σ_{inc})⁻¹≈ 7.6 cm

➢ Isotropic

[NIST Centre for Neutron Research, Neutron News, Vol. 3, No. 3, 1992] [I.I.Gurevich, L.V.Tarasov, Low-energy neutron physics, 1968]

2. elastic scattering on structural features > large scale defects in the D₂ crystal > Defects caused by thermal mechanical stress during cooling of the solid [T.Brys, Diss. ETH 17350 (2007)]

Solid D₂ freezing studies at PSI

Access for direct measurements of the solid D_2 structure are not possible due to the high radiation environment close to the spallation target

Crysal growth in small sample container has lead to less defects when solid deuterium was cooled down slowly

Optimize freezing process at the PSI UCN source Observed increase of the UCN output due to the controlled slow freezing of deuterium

Studies on UCN extraction from solid D_2

UCN energy spectrum measurement

Determined UCN energy spectrum at the West-1 beamport by a time of flight measurement

Infer energy dependence of UCN extraction

Conclusion and outlook

UCNs can be stored for long times which makes them useful tools for fundamental physics

Since experimental sensitivity is limited by statistics we are working on improving the output of the PSI UCN source by

- 1. Dedicated measurements of the performance of the source
- 2. Energy dependent models and simulations of the UCN extraction from the solid deuterium converter
- 3. Combine information to propose conclusive possible design upgrades of the source and in particular the central insert containing
 - parts of the cryogenic system
 - storage flaps
 - converter vessel

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

PhD Seminar 2019 Ingo Rienäcker on behalf of the PSI UCN group

Thank You

Fermi potential

If $E_{kin} < V_{\rm F}\,$ the UCN will be totally reflected under all angles of incidence

Storage volume dimensions >> UCN wavelength

- > classical trajectories
- > ultracold gas in free molecular flow
- [R. Golub, D. Richardson, S.K. Lamoreaux, Ultra-Cold Neutrons, Adam Hilger, 1991]

Material (solid)	Fermi Potential
Aluminium	V _F =54 neV
Nickel	V _F =252 neV
Diamond	V _F =304 neV

Superthermal UCN production

- 1. Create free neutrons by nuclear fission or **spallation** (using PSI HIPA beam)
- 2. Thermalize (slow down) neutrons by elastic scattering in a moderator at like liquid hydrogen, light water, ... or **heavy water**
- 3. Convert moderated neutrons to UCN by inelastic superthermal moderation in liquid helium or **solid deuterium**

Simulation of neutron moderation

MCNP6 Monte Carlo simulation of spallation process and moderation benchmarked by gold foil activation measurements [H.Becker et. al., NIM A 777 (2015)]

Low-energy neutron scattering kernels

'Bariloche'-Kernel [R. Granada, EPL 86, 2009] 'Stuttgart'-Kernel [W. Bernant et. al., Nuclear Science Technology, 2002]

Neutron cross section of *MCNP* S(α,β) kernels

Incident neutron energy (MeV)

Neutron flux density distribution

D₂ spin isomers

J=odd: «para-D₂» J=even: «ortho-D₂»

UCN losses in solid D₂

UCN are lost by:

- Thermal phonon up-scattering Solution: Cool moderator to low temperatures
- Neutron induced J=1→0 transition of D₂ angular momentum eigenstate Solution: Reduce J=1 population → increase J=0 ortho-D₂ concentration
- Absorption on hydrogen nucleus Solution: Reduce hydrogen contamination
- Absorption on deuterium nucleus Solution: None

[C.-Y. Liu, A.R. Young, S.K Lamoreaux, Phys. Rev. B, Vol62][NIST Centre for Neutron Research, Neutron News, Vol. 3, No. 3, 1992]

UCN extraction from solid D₂

UCN lifetime in the PSI solid D_2 converter expected to be $\tau \approx 30$ ms

[CL. Morris et al., Physical Review Letters 89(27) (2002)]

How much time does it take for the UCN to escape from the sD_2 ?

- Solid D_2 height ≈ 13 cm
- typical UCN velocities ≈ 4m/s
- \rightarrow extraction time \approx life time

But UCN extraction time is increased by

- elastic incoherent scattering $\lambda_{MFP} = (\rho \sigma_{inc})^{-1} \approx 7.6 \text{ cm}$
 - ➢ isotropic

> no coherent interference λ_{UCN} >> lattice distances [NIST Centre for Neutron Research, Neutron News, Vol. 3, No. 3, 1992]

[I.I.Gurevich, L.V.Tarasov, Low-energy neutron physics, 1968]

elastic scattering on structural features

Iarge scale defects in the D₂ crystal

surface frost

[A.Anghel et. al., EPJ 54: 148 (2018)][R. Golub, D. Richardson, S.K. Lamoreaux, Ultra-Cold Neutrons, Adam Hilger, 1991]

Solid D₂ structure studies

D_2 crystals at 5K grown from the liquid in a 40cm² sample container at different cooling rates

Low light transmission indicates more structural defects

Defects caused by thermal stress during cooling of the solid