

Zurich PhD Student Seminar 2019

NNLO corrections in massive QED

Tim Engel

Paul Scherrer Institut / Universität Zürich

 10^{th} October 2019

Based on 1811.06461, 1909.10244

T. Engel, 10.10.19 - p.1/10

phenomenological reasons

- Low-energy precision experiments: MEG, Mu3e, MUSE, MUonE
- SM background has to be known precisely
- NNLO with $m_e \neq 0$ for $\mu \rightarrow e\nu\nu$, $\mu p \rightarrow \mu p$, $ep \rightarrow ep$, $\mu e \rightarrow \mu e$
- e.g. μe scattering at 10ppm: NNLO $\alpha^2 \log^2 m_e \gg 10^{-5}$

phenomenological reasons

- Low-energy precision experiments: MEG, Mu3e, MUSE, MUonE
- SM background has to be known precisely
- NNLO with $m_e \neq 0$ for $\mu \rightarrow e \nu \nu$, $\mu p \rightarrow \mu p$, $e p \rightarrow e p$, $\mu e \rightarrow \mu e$
- e.g. $\mu-e$ scattering at 10ppm: NNLO $lpha^2\log^2 m_e \gg 10^{-5}$

technical reasons

- simplifies real corrections
- initial state logarithms explicit

$$\sigma = \int \mathrm{d}\Phi_n |\mathcal{A}|^2 = \int \mathrm{d}\Phi_2 \left| \underbrace{\frac{1}{2}}_{n} + \underbrace{\frac{1}{2}}_{n} + \underbrace{\frac{1}{2}}_{n} + \underbrace{\frac{1}{2}}_{n} + \underbrace{\frac{1}{2}}_{n} + \ldots \right|^2$$

T. Engel, 10.10.19 - p.3/10

$$\sigma = \int \mathrm{d}\Phi_n |\mathcal{A}|^2 = \int \mathrm{d}\Phi_2 \left| \underbrace{\frac{1}{2}}_{k} + \underbrace{\frac{1}{2}}_{k} + \underbrace{\frac{1}{2}}_{k} + \underbrace{\frac{1}{2}}_{k} + \ldots \right|^2$$

LO:
$$\int d\Phi_2\left(\frac{1}{2} \times \frac{1}{2}\right) \sim \alpha^2$$

NLO: $\int d\Phi_2\left(\frac{1}{2} \times \frac{1}{2} + ...\right) \sim \alpha^3$
NNLO: $\int d\Phi_2\left(\frac{1}{2} \times \frac{1}{2} + ...\right) \sim \alpha^4$

T. Engel, 10.10.19 - p.3/10

$$\sigma = \int \mathrm{d}\Phi_n |\mathcal{A}|^2 = \int \mathrm{d}\Phi_2 \left| \underbrace{\frac{1}{2}}_{n} + \underbrace{\frac{1}{2}}_{n} + \underbrace{\frac{1}{2}}_{n} + \underbrace{\frac{1}{2}}_{n} + \ldots \right|^2$$

T. Engel, 10.10.19 - p.3/10

 $\sim \int_0 \mathrm{d}E_\gamma \int_0 \mathrm{d}\theta \; rac{1}{E_\gamma(1-eta_e\cos heta)}$ $d\Phi_{\gamma}$

Two types of IR singularities

- soft: $E_{\gamma} \rightarrow 0$
- collinear: $\theta \to 0$ (if $\beta_e = 1 \leftrightarrow m_e = 0$)

$$\int \mathrm{d}\Phi_{\gamma} \underbrace{\overset{\checkmark}{\underbrace{}}_{}^{}}_{} \sim \int_{0} \mathrm{d}E_{\gamma} \int_{0} \mathrm{d}\theta \, \frac{1}{E_{\gamma}(1-\beta_{e}\cos\theta)}$$

Two types of IR singularities

- soft: $E_{\gamma} \rightarrow 0$
- collinear: $\theta \to 0$ (if $\beta_e = 1 \leftrightarrow m_e = 0$)

KLN theorem

• IR divergences from final state real emissions cancel the ones from the loops

T. Engel, 10.10.19 - p.4/10

Two types of IR singularities

- soft: $E_{\gamma} \rightarrow 0$
- collinear: $\theta \to 0$ (if $\beta_e = 1 \leftrightarrow m_e = 0$)

KLN theorem

• IR divergences from final state real emissions cancel the ones from the loops

+...

T. Engel, 10.10.19 - p.5/10

conflict

- phase space harder if massless
- loop integrals harder if massive
- \Rightarrow 'massification' & FKS²

'massification'

simple process $(\mu \rightarrow e \nu \nu)$

- $\mathcal{A}_{\mu}(m) = \mathcal{S} \times Z \times \mathcal{A}_{\mu}(0) + \mathcal{O}(m \log m)$
- Z ⊃ log(m): process indep. jet fct.
- S ⊃ log(m): process dep. soft fct. (easy)

[Becher, Melnikov 07; TE, Gnendiger, Signer, Ulrich 18]

'massification'

simple process $(\mu \rightarrow e \nu \nu)$

- $\mathcal{A}_{\mu}(m) = \mathcal{S} \times Z \times \mathcal{A}_{\mu}(0) + \mathcal{O}(m \log m)$
- Z ⊃ log(m): process indep. jet fct.
- S ⊃ log(m): process dep. soft fct. (easy)

[Becher, Melnikov 07; TE, Gnendiger, Signer, Ulrich 18]

complex process ($\mu e \rightarrow \mu e$)

• $\mathcal{A}_{\mu e}(m) = \mathcal{S}' \times Z \times Z \times \mathcal{A}_{\mu e}(0) + \mathcal{O}(m \log m)$

FKS² subtraction scheme

idea

 $\int \mathrm{d}\Phi_{\gamma} \Big(\mathcal{M}(E_{\gamma}) - \mathcal{M}_{\mathsf{CT}} \Big) + \int \mathrm{d}\Phi_{\gamma} \mathcal{M}_{\mathsf{CT}}$

complicated & finite \rightarrow numerically

divergent & easy \rightarrow analytically

FKS² subtraction scheme

idea

$$\underbrace{\int \mathrm{d}\Phi_{\gamma}\Big(\mathcal{M}(E_{\gamma})-\mathcal{M}_{\mathsf{CT}}\Big)}_{\mathsf{complicated \& finite \to numerically}}$$

+
$$\underbrace{\int \mathrm{d}\Phi_{\gamma}\mathcal{M}_{\mathsf{CT}}}_{\mathsf{divergent \& easy \to analytically}}$$

FKS (NLO)

$$\sigma^{(1)} = \sigma_n^{(1)}(\xi_c) + \sigma_{n+1}^{(1)}(\xi_c)$$

$$\sigma_n^{(1)}(\xi_c) = \int d\Phi_n^{d=4} \left(\mathcal{M}_n^{(1)} + \hat{\mathcal{E}}(\xi_c) \mathcal{M}_n^{(0)} \right)$$

$$\sigma_{n+1}^{(1)}(\xi_c) = \int d\Phi_{n+1}^{d=4} \left(\frac{1}{\xi_1} \right)_c \left(\xi_1 \mathcal{M}_{n+1}^{(0)f} \right)$$

[Frixione, Kunszt, Signer 95]

T. Engel, 10.10.19 - p.7/10

FKS² subtraction scheme

 FKS^2 (NNLO)

$$\sigma^{(2)} = \sigma^{(2)}_{n}(\xi_{c}) + \sigma^{(2)}_{n+1}(\xi_{c}) + \sigma^{(2)}_{n+2}(\xi_{c})$$

$$\sigma^{(2)}_{n}(\xi_{c}) = \int d\Phi^{d=4}_{n} \left(\mathcal{M}^{(2)}_{n} + \hat{\mathcal{E}}(\xi_{c}) \mathcal{M}^{(1)}_{n} + \frac{1}{2!} \mathcal{M}^{(0)}_{n} \hat{\mathcal{E}}(\xi_{c})^{2} \right)$$

$$\sigma^{(2)}_{n+1}(\xi_{c}) = \int d\Phi^{d=4}_{n+1} \left(\frac{1}{\xi} \right)_{c} \left(\xi \mathcal{M}^{(1)f}_{n+1}(\xi_{c}) \right)$$

$$\sigma^{(2)}_{n+2}(\xi_{c}) = \int d\Phi^{d=4}_{n+2} \left(\frac{1}{\xi_{1}} \right)_{c} \left(\frac{1}{\xi_{2}} \right)_{c} \left(\xi_{1}\xi_{2} \mathcal{M}^{(0)f}_{n+2} \right)$$

[TE, Signer, Ulrich 19]

Electron energy spectrum $(x_e \sim E_e)$:

[Arbuzov, Czarnecki, Gaponenko; Arbuzov, Melnikov 02, Anastasiou, Melnikov, Petriello 05]

T. Engel, 10.10.19 - p.9/10

conclusion

- NNLO corrections in massive QED phenomenologically relevant
- 'massification' & FKS^2 applied to muon decay (proof of concept)
- work in progress: $\mu e \rightarrow \mu e$, $\mu p \rightarrow \mu p$ and $ep \rightarrow ep$

questions?