

Probing neutrino-nucleus interactions using the T2K off-axis near detector.

Kevin Fusshoeller

ETH Zurich

Zurich PhD Seminar

10 October 2019 PSI, Switzerland

Outline

- 1. Introduction
- 2. The T2K experiment
- 3. Measuring cross sections in neutrino experiments
- 4. Building a selection
- 5. Outlook

1. Introduction

What are neutrinos?

- Neutral particles (Q = 0).
- Extremely abundant.
- 3 different flavours:

Why are they interesting?

- Very light mass ($m_v < 1 \text{ eV}$).
- Only interact via the weak force.

- Mass of neutrinos is the first evidence of physics beyond the Standard Model ($m_v = 0$ in the SM).
 - \rightarrow Neutrino oscillations.
 - \rightarrow Possible CP violation in the leptonic sector.
 - \rightarrow Matter/Antimatter asymmetry in the universe.
- Sterile (non-interacting massive) neutrinos.
 - \rightarrow Dark matter candidate.

4

- *Flavor* eigenstates \rightarrow interactions
- *Mass* eigenstates \rightarrow propagation

Credit: Fermilab/Sandbox Studios

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix} = \begin{bmatrix} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{bmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$

Example:

An **electron-neutrino** is created in the fusion reactions of the sun.

- *Flavor* eigenstates \rightarrow interactions
- *Mass* eigenstates \rightarrow propagation

Credit: Fermilab/Sandbox Studios

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix} = \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{bmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$

Example:

The neutrino will propagate as one of the possible **mass states**.

6

- *Flavor* eigenstates \rightarrow interactions
- *Mass* eigenstates \rightarrow propagation

Credit: Fermilab/Sandbox Studios

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix} = \begin{bmatrix} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{bmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$

Example:

The neutrino *interacts* within a neutrino detector. Since the mass state is a linear combination of the flavor states, it's possible that we measure a **muon-neutrino**.

Kevin Fusshoeller

- *Flavor* eigenstates \rightarrow interactions
- *Mass* eigenstates \rightarrow propagation

Credit: Fermilab/Sandbox Studios

$$\begin{pmatrix} |\nu_e\rangle\\ |\nu_{\mu}\rangle\\ |\nu_{\tau}\rangle \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & c_{23} & s_{23}\\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}}\\ 0 & 1 & 0\\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0\\ -s_{12} & c_{12} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} |\nu_1\rangle\\ |\nu_2\rangle\\ |\nu_3\rangle \end{pmatrix} = \begin{bmatrix} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{bmatrix} \begin{pmatrix} |\nu_1\rangle\\ |\nu_2\rangle\\ |\nu_3\rangle \end{pmatrix}$$

We can describe neutrino oscillations with 6 parameters:

- 2 mass differences: Δm_{31}^2 , Δm_{21}^2
- 3 angles: θ_{12} , θ_{13} , θ_{23}
- 1 CP-violating phase: δ_{CP}

 $(\Delta m_{ij}^2 = m_i^2 - m_j^2)$ $(c_{12} = \cos\theta_{12}, s_{12} = \sin\theta_{12})$

Current status

	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 9.3)$		
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
$\sin^2 \theta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	
$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.75}$	$31.62 \rightarrow 36.27$	
$\sin^2 \theta_{23}$	$0.582^{+0.015}_{-0.019}$	$0.428 \rightarrow 0.624$	$0.582^{+0.015}_{-0.018}$	0.433 ightarrow 0.623	
$ heta_{23}/^{\circ}$	$49.7^{+0.9}_{-1.1}$	$40.9 \rightarrow 52.2$	$49.7^{+0.9}_{-1.0}$	$41.2 \rightarrow 52.1$	
$\sin^2 heta_{13}$	$0.02240\substack{+0.00065\\-0.00066}$	0.02044 o 0.02437	$0.02263\substack{+0.00065\\-0.00066}$	$0.02067 \to 0.02461$	
$\theta_{13}/^{\circ}$	$8.61^{+0.12}_{-0.13}$	$8.22 \rightarrow 8.98$	$8.65_{-0.13}^{+0.12}$	$8.27 \rightarrow 9.03$	
$\delta_{ m CP}/^{\circ}$	217^{+40}_{-28}	$135 \rightarrow 366$	280^{+25}_{-28}	$196 \rightarrow 351$	
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.525^{+0.033}_{-0.031}$	$+2.431 \rightarrow +2.622$	$-2.512^{+0.034}_{-0.031}$	$-2.606 \rightarrow -2.413$	

Still unknown: sign of Δm_{31}^2 , value of δ_{CP} .

Kevin Fusshoeller

2. The T2K Experiment

- T2K is a long baseline neutrino experiment measuring oscillations of neutrinos as they travel through Earth.
- Goals: measure θ_{13} , θ_{23} , δ_{CP} and neutrino-nucleus cross sections.
- **J-PARC:** high-intensity neutrino beam factory.
- **Far Detector**: measures the oscillated neutrino beam.
- Near Detectors: measure the unoscillated neutrino beam.

How do you create a neutrino beam?

- 30 GeV protons collide with a carbon target.
- Positive (negative) pions decay into anti-muons (muons) and (anti-) muon-neutrinos.
- Two modes of neutrino beams can be created thanks to magnetic horns focusing negative or positive pions.
- All particles except the neutrinos are stopped in a beam dump.
- Beam is sent at a 2.5° angle for a narrower energy spectrum peaking at the oscillation maximum.

The Far Detector: Super-Kamiokande

- Water Cherenkov detector situated 1000 m underground in the Kamioka-mine.
 - \rightarrow Low cosmic background.
- 50000 tons of ultra-pure water.
 → Low radioactive background.
- Detector split into inner detector with 11129 PMTs and outer detector with 1885 PMTs.
 - \rightarrow Additional protection against cosmic rays.
- Muons and electrons distinguished by "fuzziness" of ring.

per-Kamiokande IV

Super-Kamiokande IV

Times (ns)

The off-axis Near Detector: ND280

- Situated at 280 m from the accelerator.
- Fully magnetised detector.
 - \rightarrow Can measure if anti-/neutrino.
- 2 fine-grained detectors (FGDs) act as target for the neutrinos.
- 3 argon time projection chambers (TPCs) act as tracker.
 → Measure momentum and charge of particles.
- π^0 -detector measures neutral pions.
- The detector is encased in electromagnetic calorimeters (ECALs).
 - \rightarrow Measure photons.
- Goals:
 - Measure unoscillated neutrino spectrum.
 - Measure neutrino-nucleus cross sections.

3. Measuring cross sections in neutrino experiments

Why neutrino-nucleus cross sections?

	1-Ri	$\log \mu$			1-Ring e	
Error source	FHC	RHC	FHC	RHC	FHC 1 d.e.	FHC/RHC
SK Detector	2.40	2.01	2.83	3.80	13.15	1.47
SK FSI+SI+PN	2.21	1.98	3.00	2.31	11.43	1.57
Flux + Xsec constrained	3.27	2.94	3.24	3.10	4.09	2.67
Eb	2.38	1.72	7.13	3.66	2.95	3.62
$\sigma(\nu_e)/\sigma(\bar{\nu}_e)$	0.00	0.00	2.63	1.46	2.61	3.03
$NC1\gamma$	0.00	0.00	1.09	2.60	0.33	1.50
NC Other	0.25	0.25	0.15	0.33	0.99	0.18
Osc	0.03	0.03	2.69	2.49	2.63	0.77
All Systematics	5.12	4.45	8.81	7.13	18.38	5.96
All with osc	5.12	4.45	9.19	7.57	18.51	6.03
Statistical	6.42	8.45	11.55	25.82	25.82	/

- \rightarrow Statistical errors are approaching the systematic erros.
- \rightarrow Just amassing more data will not help in the future.

Challenges of neutrino-nucleus cross section measurements

- 1. Neutrinos can interact with every nucleon inside a nucleus.
 - \rightarrow Need to know the initial state of the nucleon \rightarrow nuclear models.
 - \rightarrow Excited nucleons can undergo other nuclear effects.
 - \rightarrow Ejected nucleons scatter repeatedly before exiting the nucleus (final state interactions).

 \rightarrow Difficult to infer the initial state of the neutrino from the final state.

Kevin Fusshoeller

Challenges of neutrino-nucleus cross-section measurements

- 2. Neutrinos only interact weakly:
 - \rightarrow Many usely rare processes contribute to the cross section.
 - \rightarrow Not all the processes can easily be disentangled.

Solving these challenges

Idea:

Define *model-independent samples* using final state signals:

- CC0pi: 1 muon, 0 pions. Most CCQE-like signal. Main background comes from CCRes interactions.
- CC1pi: 1 muon, 1 pion. Most CCRes-like signal. Main background comes from DIS.
- CCOther: all other. Many contributions.
- \rightarrow model-independent cross section measurement.

But: CC0pi and CC1pi share contributions from CCRES

- \rightarrow Instead of treating the CC1pi sample as background, we could treat it as signal.
- → Fit CC0pi and CC1pi together and catch correlations between parameters.
- \rightarrow Constrain interaction models.

4. Building a selection

What do we want to select?

- CC0pi events: 1 muon, no pions.
- CC1pi events: 1 muon, 1 pion.

 \rightarrow Start by selecting the muon (CC inclusive selection) and later the pions.

- Challenges:
 - No model dependance in cuts.
 - Purity of the samples.
 - Good coverage of full phase space.

- Efficiencies as a function of true muon kinematics for selections similar to the official selection (top) and for the new selection (bottom).
- Efficiency is increased by 15-20% for tracks going at high angle.

Kevin Fusshoeller

10 October 2019

Purities and Backgrounds

СС0рі	Purity	CC1pi Background
FWD	79.99	9.5
HAFWD	79.91	7.04
BWD	74.05	1.87
HABWD	72.16	3.33

CC1pi	Purity	Main Background
FWD	76.40	CC Other
HAFWD	75.71	CC Other
BWD	58.81	CC Other
HABWD	67.55	CC Other

- Good purity in most samples.
- Combined with improved coverage, this represents a great improvement with respect to previous selections.

5. Outlook

Outlook

- After the events are selected, one can extract a cross-section.
- Method: take the data as input and unfold into truth space to compare to models.
- Unfolding done with template likelihood fitter.

Summary

- Cross section measurements are important to reduce systematic errors for future neutrino experiments.
- Successfully built a selection with good purity in both CC0pi and CC1pi samples and an improved coverage of high angle tracks.

Backup Slides

How can we measure the mass hierarchy

• We can measure the sign of a mass difference thanks <u>only</u> to the socalled matter effect or MSW effect.

What is the matter effect?

- Neutrinos travelling through matter can scatter elastically.
- Electron neutrinos more likely to scatter.
 - \rightarrow Symmetry between flavours is broken
 - → Oscillation probability now also affected by density of medium that is being traversed.
- → Δm_{21}^2 known thanks to solar neutrinos (mostly electron-neutrinos at start).
- → For Δm_{31}^2 we need to shoot accelerator neutrinos (mostly muonneutrinos at start) through Earth.

How to measure/detect a neutrino?

- We cannot detect the neutrino itself, but the product of its interactions.
- For a charged-current interaction, the signal is that of an *appearing lepton*.
- Possible background:
 - Cosmic radiation
 - Radioactivity
 - Neutrinos
- Neutrinos have a very low cross-section (insert number here)
 - \rightarrow Need large detectors or high-intensity beams.
 - \rightarrow Need low backgrounds and an excellent background rejection.
 - \rightarrow Pure materials with stable isotopes.
 - \rightarrow Cosmic vetos.

Why is measuring neutrino-nucleon cross sections so different?

- Electron interacts with the nucleons mainly via electromagnetic charge.
- It will therefore interact preferably with the nucleons on the surface, which are not strongly subject to the nuclear potential.

- Neutrino is neutral → does not see Coulomb potential.
- Interacts only weakly → does not see nuclear potential.
- → The neutrino can interact with nucleons deep inside the nucleus, which feel the nuclear potential strongly.

The selection

• The selection is implemented following the scheme below, where FWD mean forward, BWD backward and HA high angle.

FWD

 μ_{-}

BWD

The selection cuts

General Quality	 Event Quality Cut Total Multiplicity Cut Sort Tracks Action Track General Quality and FV Cut Find Vertex Action Veto Action PID Action Find Pions Action FillSummaryAction_numuCC4piMultiPi 				
CC4pi Inclusive	- Fwd Quality - Fwd Veto - Fwd PID	- Bwd Quality - Bwd Veto - Bwd PID	- HAFwd Quality - HAFwd Veto - HAFwd PID	- HABwd Quality - HABwd Veto - HABwd PID	
CC4piMultiPi Exclusive	-No Pion Cut -ECal Pi0 Veto Cut	 One Pion Cut Common Vertex 2 track FGD Cut Find Correct Track Sense Action ECal Pi0 Veto Cut 	 One proton one Pion Cut Common Vertex 3 track FGD Cut 	- Others Cut	
CC other contributions	-N number of neutral	l pions -]	N number of pions (positive and negative	ve))	