Probing non-standard flavour and helicity structures in semi-leptonic B decays

Julie Pagès

Zürich PhD Seminar

October 9, 2019

based on arXiv:1909.02519 In collaboration with J. Fuentes-Martín, G. Isidori and K. Yamamoto

Tests of Lepton Flavour Universality (LFU)

Anomalies hint TeV scale NP, a common explanation implies

NP in $\tau \gg$ NP in μ/e ,

same hierarchy as in the Yukawa. Could it be more than coincidence?

In the SM, only the **Yukawa** couplings distinguish between **flavours**. They are the main source of free parameters (9 masses, 3+1 mixings), and yet they obey a very specific structure :

- Strong hierarchy between generations $m_3 \gg m_2 \gg m_1$
- Small mixings in the CKM

The gauge sector of the SM has few degrees of freedom and is fixed by symmetries $\Rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y$

Can we find a symmetry describing the Yukawa sector? A **flavour symmetry**?

U(2) Flavour Symmetry

Approximate $U(2)^5$ flavour symmetry : [Barbieri et al. 1105.2296] at first order, light families are massless and indistinguishable

$$U(2)_q \times U(2)_{\ell} \times U(2)_u \times U(2)_d \times U(2)_d$$

Exact limit :

$$Y_{u,d,e} = y_{t,b,\tau} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow M_{u,d,e} \sim \begin{pmatrix} \Box & \Box & \Box \\ \Box & \Box & \Box \\ \Box & \Box & \Box \end{pmatrix} V_{CKM} \sim \begin{pmatrix} \Box & \Box & \Box \\ \Box & \Box & \Box \\ \Box & \Box & \Box \end{pmatrix}$$

Largest breaking in SM is of order $\epsilon = \left[Tr(Y_u Y_u^{\dagger}) - \frac{Tr(Y_u Y_u^{\dagger} Y_d Y_d^{\dagger})}{Tr(Y_d Y_d^{\dagger})} \right]^{1/2} \approx y_t |V_{ts}| \approx 0.04$

Introduce 5 **spurions** to recover SM patterns

$$Y_{u,d,e} = y_{t,b,\tau} \begin{pmatrix} \Delta_{u,d,e} & V_{q,\ell} \\ 0 & 1 \end{pmatrix} \qquad \begin{array}{c} V_q \sim \mathcal{O}(\epsilon) \\ \Delta_{u,d,e} \sim y_{c,s,\mu} \end{array}$$

This symmetry and spurions can be a guiding principle for the **anomalies!**

(SM)EFT framework

Semileptonic dimension six 4-fermions operators mediating B decays

Charged current

Neutral current

$$O_{\ell q}^{(3)} = (\bar{\ell}_L \gamma^\mu \tau^I \ell_L) (\bar{q}_L \gamma_\mu \tau^I q_L) \qquad O_{\ell q}^{(1)} = (\bar{\ell}_L \gamma^\mu \ell_L) (\bar{q}_L \gamma_\mu q_L)$$

$$O_{\ell edq} = (\bar{\ell}_L e_R)(\bar{d}_R q_L) \text{ only } b \to s\tau\tau \text{ } O_{qe} = (\bar{q}_L \gamma^\mu q_L)(\bar{e}_R \gamma_\mu e_R)$$
$$O_{\ell equ}^{(1)} = (\bar{\ell}_L^a e_R)\epsilon_{ab}(\bar{q}_L^b u_R) \qquad O_{\ell d} = (\bar{\ell}_L \gamma^\mu \ell_L)(\bar{d}_R \gamma_\mu d_R)$$

$$O_{\ell equ}^{(3)} = (\bar{\ell}_L^a \sigma_{\mu\nu} e_R) \epsilon_{ab} (\bar{q}_L^b \sigma^{\mu\nu} u_R) \bigvee O_{ed} = (\bar{e}_R \gamma^\mu e_R) (\bar{d}_R \gamma_\mu d_R)$$

Assumption to reduce basis : transform under $U(2)_u \times U(2)_d \times U(2)_e$ keep only one power of each leading spurions V_q and V_ℓ

(SM)EFT framework

$O_{\ell q}^{(3)} = (\bar{\ell}_L \gamma^\mu \tau^I \ell_L) (\bar{q}_L \gamma_\mu \tau^I q_L) \quad O_{\ell q}^{(1)} = (\bar{\ell}_L \gamma^\mu \ell_L) (\bar{q}_L \gamma_\mu q_L) \quad O_{\ell e d q} = (\bar{\ell}_L e_R) (\bar{d}_R q_L)$

$$\mathscr{L}_{\rm EFT,NP} = -\frac{1}{v^2} \left[C_{V_1} \Lambda_{V_1} O_{\ell q}^{(1)} + C_{V_3} \Lambda_{V_3} O_{\ell q}^{(3)} + \left(2C_S \Lambda_S O_{\ell edq} + h.c. \right) \right]$$

• strong constraints on $b \to s \nu_\tau \bar{\nu}_\tau$ can be avoided with $C_{V_1} \approx C_{V_3}$

- The $U_1 \sim (3,1)_{2/3}$ vector leptoquark model has a one-to-one matching with this Lagrangian with

$$C_{V_1} = C_{V_3} \equiv C_V > 0$$
$$\Lambda_{V_1} = \Lambda_{V_3} \equiv \Lambda_V$$
$$C_S = -2\beta_R C_V$$

$$\begin{aligned} \mathscr{L}_{U_1} &= \frac{g_U}{\sqrt{2}} U_1^{\mu} \Big[\beta_L^{i\alpha} (\bar{q}_L^i \gamma_{\mu} \mathscr{C}_L^{\alpha}) \\ &+ \beta_R^{i\alpha} (\bar{d}_R^i \gamma_{\mu} e_R^{\alpha}) \Big] \end{aligned}$$

$$\mathscr{L}_{\text{EFT,NP}} = -\frac{1}{v^2} \left[C_V \Lambda_V \left(O_{\ell q}^{(1)} + O_{\ell q}^{(3)} \right) + \left(2C_S \Lambda_S O_{\ell edq} + \text{h.c.} \right) \right]$$

 $U(2)_q \times U(2)_{\ell}$ spurions in interactions

$O_{\ell q}^{(3)} = (\bar{\ell}_L \gamma^\mu \tau^I \ell_L) (\bar{q}_L \gamma_\mu \tau^I q_L) \quad O_{\ell q}^{(1)} = (\bar{\ell}_L \gamma^\mu \ell_L) (\bar{q}_L \gamma_\mu q_L) \quad O_{\ell edq} = (\bar{\ell}_L e_R) (\bar{d}_R q_L)$

$$\mathscr{L}_{\text{EFT,NP}} = -\frac{1}{v^2} \left[C_V \Lambda_V \left(O_{\ell q}^{(1)} + O_{\ell q}^{(3)} \right) + \left(2C_S \Lambda_S O_{\ell edq} + \text{h.c.} \right) \right]$$

Wilson coefficients encode NP strength

Flavour structure

In interaction basis

 $\Lambda_{V} = \Gamma_{L}^{\dagger} \times \Gamma_{L} \qquad \Lambda_{S} = \Gamma_{L}^{\dagger} \times \Gamma_{R}$ $\Gamma_{L} = \begin{pmatrix} V_{q} V_{\ell}^{*} & V_{q} \\ V_{\ell}^{*} & 1 \end{pmatrix} \qquad \Gamma_{R} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

with order 1 coefficients

In order to explain B anomalies we need $V_{\ell} \sim V_q \sim \mathcal{O}(10^{-1})$

- \Rightarrow same size : for leptons and quark \rightarrow common origin ?
 - as the spurions in the Yukawa

Common explanation makes sense !

 $U(2)^5$ in practice

$$\mathscr{L}_{\text{EFT,NP}} = -\frac{1}{v^2} \left[C_V \Lambda_V \left(O_{\ell q}^{(1)} + O_{\ell q}^{(3)} \right) + \left(2C_S \Lambda_S O_{\ell edq} + \text{h.c.} \right) \right]$$

$U(2)^5$ predictions

U(2) flavour symmetry predictions :

- NP in charged current \gg NP in neutral current
- NP strength in $b \to c(s) =$ NP strength in $b \to u(d)$
- Scalar operator with light fermions suppressed by ratio of masses

Aim of this work :

- Test U(2) flavour symmetry in B decays to 1^{st} and 2^{nd} generations
- Identify observables to disentangle between different $U\!(2)$ models by studying $C_{\!S}$ and the lepton spurion

Status today

Since NP couples mainly to 3^{rd} generation, test $U(2)^5$ with charged current

- Dashed ellipses: R_D, R_{D^*} only
- Full ellipses: + $\mathscr{B}(B \to \tau \nu)$
- 1σ lines for each observable
- Neutral current with maximum spurion size not very constraining
- Two specific vector leptoquark scenario (red)

Future prospects - polarisation observables

$$P_{\tau}^{D^{(*)}} = \frac{\Gamma(\bar{B} \to D^{(*)}\tau^{(+)}\bar{\nu}) - \Gamma(\bar{B} \to D^{(*)}\tau^{(-)}\bar{\nu})}{\Gamma(\bar{B} \to D^{(*)}\tau^{(+)}\bar{\nu}) + \Gamma(\bar{B} \to D^{(*)}\tau^{(-)}\bar{\nu})} \qquad F_{L}^{D^{*}} = \frac{\Gamma(\bar{B} \to D_{L}^{*}\tau\bar{\nu})}{\Gamma(\bar{B} \to D^{*}\tau\bar{\nu})}$$

$$\Delta P_{\chi} = \frac{P_{\chi}}{P_{\chi}^{SM}} - 1$$

$$0.2$$

$$\Delta F_{L}^{D^{*}}|_{exp} \qquad \Delta F_{\tau}^{D^{*}}$$

$$0.2$$

$$\Delta F_{L}^{D^{*}}|_{exp} \qquad \Delta F_{\tau}^{D^{*}}$$

$$\Delta F_{\tau}^{D^{*}}$$

$$\Delta F_{L}^{D^{*}} = \frac{\Gamma(\bar{B} \to D_{\tau}^{*}\tau\bar{\nu})}{\Gamma(\bar{B} \to D^{*}\tau\bar{\nu})}$$

$$\Delta F_{\tau}^{D^{*}}|_{exp} \qquad \Delta F_{\tau}^{D^{*}}$$

$$\Delta F_{\tau}^{D^{*}}|_{exp} \qquad \Delta F_{\tau}^{D^{*}}$$

$$\Delta F_{\tau}^{D^{*}} = \frac{\Gamma(\bar{B} \to D_{\tau}^{*}\tau\bar{\nu})}{\Gamma(\bar{B} \to D^{*}\tau\bar{\nu})}$$

Future prospects - $b \rightarrow u$ transition

Expanding analysis in the quark direction

Lepton spurion

Lepton spurion - neutral currents

Conclusion

B anomalies hint NP coupled Yukawa couplings have mainly to 3rd generation similar hierarchy $U(2)^5$ flavour symmetry

Current data is incompatible with SM and consistent with

U(2) flavour symmetry...

Since
$$U(2)$$
 is very predictive,

- B decays to 2nd vs 1st generation fixed
- Possible big contribution to C_S Lepton spurion

future data in **charged** and **neutral** current will be able verify or discard this hypothesis, and point us towards the right U(2) model (U_1 leptoquark ?)

So...

With or without U(2)?

Back-up slides

Charged current

	SM	exp _{now}	Experiment
R _D	0.297(3)	0.34(3)	LHCb,Belle II $ ightarrow$ 3%
R_{D^*}	0.250(3)	0.295(14)	LHCb, Belle II $ ightarrow$ 2%
$F_L^{D^*}$	0.464(10)	0.60(9)	Belle II \rightarrow 0.04
${\sf P}_{ au}^{D^*}$	0.496(15)	-0.38(55)	Belle II \rightarrow 0.07
${\sf P}^{\sf D}_{ au}$	0.321(3)		Belle II \rightarrow 3%
${\cal B}(B o auar u)_{ m /SM}$	0.812(54)	1.09(24)	LHCb
$\mathcal{B}(B_c o auar u)$	0.02	$\lesssim 30\%$	
R_{π}	0.641(16)	1.05 ± 0.51	Belle II $ ightarrow$ 0.641 \pm 0.071

Back-up

Neutral current

	SM	exp _{now}	Experiment
R _K (*)	1.00 ± 0.01	0.80 ± 0.05	LHCb, Belle II
${\cal B}(B_{ m s} o auar{ au})_{ m /SM}$	LHCb 7.73(49) $\times 10^{-7}$	$< 8.8 \times 10^{3}$	LHCb
${\cal B}({\sf B}_{\sf S} o \muar\mu)$	$3.60(5) \times 10^{-9}$	$2.72(34) \times 10^{-9}$	LHCb
${\cal B}({\sf B}_{\sf S} o auar\mu)$	0	$< 4.2 \times 10^{-5}$	LHCb
${\cal B}({ m B} o \muar\mu)$	$1.06(9) \times 10^{-10}$	$1.6(1.1) \times 10^{-10}$	LHCb
${\cal B}(B o\pi\muar\mu\mu)_{[1,6]}$	$1.31(25) \times 10^{-9}$	$0.91(21) \times 10^{-9}$	LHCb
${\cal B}(B o\pi\muar\mu)_{[15,22]}$	$0.72(7) \times 10^{-9}$	$0.47(11) \times 10^{-9}$	LHCb
${\cal B}(au o \mu \gamma)$	0	$< 0(3) \times 10^{-8}$	Belle II

Back-up - fields and spurions representations

 $U(2)_a \times U(2)_u \times U(2)_d$

$$U(2)_{\ell} \times U(2)_{e}$$

 $Q^{(2)} = (Q^1, Q^2) \sim (2, 1, 1) \qquad Q^3 \sim (1, 1, 1)$ $u^{(2)} = (u^1, u^2) \sim (1, 2, 1) \qquad t \sim (1, 1, 1)$ $d^{(2)} = (d^1, d^2) \sim (1, 1, 2) \qquad b \sim (1, 1, 1)$

 $L^{(2)} = (L^1, L^2) \sim (2, 1) \quad L^3 \sim (1, 1)$ $e^{(2)} = (e^1, e^2) \sim (1, 2) \quad \tau \sim (1, 1)$

 $U(2)_q \times U(2)_{\ell} \times U(2)_u \times U(2)_d \times U(2)_e$

$$\begin{split} V_q &\sim (2,1,1,1,1) & V_{\ell} &\sim (1,2,1,1,1) \\ \Delta_u &\sim \left(2,1,\bar{2},1,1\right) & \Delta_e &\sim \left(1,2,1,1,\bar{2}\right) \\ \Delta_{u(d)} &\sim \left(2,1,1,\bar{2},1\right) \end{split}$$

Back-up - $U(2)^5$ parameters

Constrained: $s_d/c_d = |V_{td}/V_{ts}|$, $\alpha_d = -\arg(V_{td}/V_{ts})$, $s_t = s_b - V_{cb}$, s_u Free: $s_b/c_b = |x_b| |V_q|$, $s_\tau/c_\tau = |x_\tau| |V_\ell|$, s_e , ϕ_q Back-up

$$\begin{split} \mathscr{A}^{\mathrm{SM}} &\to (1 + C_{V}^{c}) \mathscr{A}^{\mathrm{SM}} \\ b \to c\tau\bar{\nu} \qquad C_{V(S)}^{c} = C_{V(S)} \left[1 + \lambda_{q}^{s} \left(\frac{V_{cs}}{V_{cb}} + \frac{V_{cd}}{V_{cb}} \frac{V_{td}^{*}}{V_{ts}^{*}} \right) \right] \\ &= C_{V(S)} \left(1 - \lambda_{q}^{s} \frac{V_{tb}^{*}}{V_{ts}^{*}} \right) \\ b \to u\tau\bar{\nu} \qquad C_{V(S)}^{u} = C_{V(S)} \left[1 + \lambda_{q}^{s} \left(\frac{V_{us}}{V_{ub}} + \frac{V_{ud}}{V_{ub}} \frac{V_{td}^{*}}{V_{ts}^{*}} \right) \right] \\ &= C_{V(S)}^{c} \\ b \to c\ell\bar{\nu} \qquad C_{V}^{c\mu} = \lambda_{\ell}^{\mu} C_{V} \left[1 - \frac{\Delta_{q\ell}^{s\mu}}{\lambda_{\ell}^{\mu}} \frac{V_{tb}^{*}}{V_{ts}^{*}} \right] = \mathcal{O}(\lambda_{\ell}^{\mu} C_{V}^{c}) \end{split}$$

21