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Introduction: Purpose of the talk

• Poisson equation on rectangular domains often solved by finite
differences (5-point stencil).
Ditto in 3D with the 7-point stencil.

• These methods converge with O(h2) in the mesh width h

• Higher orders of accuracy requires bigger stencils or more
brain.

• Higher orders of accuracy lead to (much) smaller linear
systems of equations for the same accuracy.

• We discuss how to get fourth order compact finite difference
schemes.

• Emphasis on fast Poisson solvers: the solution is obtained by
the FFT.
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The 1D case: problem statement

• Interval I = (0, a)

• Poisson equation:

−u′′(x) = f (x), 0 < x < a, u(0) = u(a) = 0.

• Equidistant mesh 0 = x0 < x1 < · · · < xn < xn+1 = a.

• Mesh width h = xj − xj−1 = a/(n + 1).

• Approximation uj ≈ u(xj).

• Approximate Poisson equation by

−uj−1 + 2uj − uj+1

h2
= f (xj), 1 ≤ j ≤ n. (1)
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The 1D case: linear system

The n equations in (1) can be collected in matrix equation

1

h2
Tnu =

1

h2


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




u1
u2
...

un−1
un

 =


f (x1)
f (x2)

...
f (xn−1)
f (xn)

 = f .

Tn ∈ Rn×n has the spectral decomposition

Tn = QnΛnQ
T
n , (2)

with diagonal Λn

Λn = diag(λ
(n)
1 , . . . , λ

(n)
n ), λ

(n)
k = 4 sin2 kπ

2(n + 1)
. (3)
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The 1D case: linear system (cont.)

Qn is orthogonal, i.e., Q−1n = QT
n , with elements

qjk =

(
2

n + 1

)1/2

sin
jkπ

n + 1
.

Multiplying with Qn or QT
n is related to the Fourier transform.

If n is chosen properly then the Fast Sine Transform (∼Fast
Fourier Transform) can be employed to solve (1).

This does not make sense in the 1D case, though.
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The 1D case: local truncation error

The local truncation error is obtained by plugging the exact
solution in the FD formula,

−u(x − h) + 2u(x)− u(x + h)

h2
− f (x) = τ(x ; h)
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The 1D case: local truncation error (cont.)

Using the Taylor series expansion

u(x ± h) = u(x)± hu′(x) +
h2

2
u′′(x)± h3

6
u′′′(x) +

h4

24
u′′′′(x) +O(h5)

we obtain

u(xj−1)− 2u(xj) + u(xj+1)

= u(xj)− hu′(xj) +
h2

2
u′′(xj)−

h3

6
u′′′(xj) +

h4

24
u′′′′(xj) + · · ·

− 2u(xj)

+ u(xj) + hu′(xj) +
h2

2
u′′(xj) +

h3

6
u′′′(xj) +

h4

24
u′′′′(xj) + · · ·

= h2u′′(xj) +
h4

12
u′′′′(xj) +O(h6)
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The 1D case: local truncation error (cont.)

Using the Taylor series expansion

u(x ± h) = u(x)± hu′(x) +
h2

2
u′′(x)± h3

6
u′′′(x) +

h4

24
u′′′′(x) +O(h5)

we obtain

u(xj−1)− 2u(xj) + u(xj+1) = h2u′′(xj) +
h4

12
u′′′′(xj) +O(h6)

or, using −u′′(x) = f (x),

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= f (xj)−

h2

12
u′′′′(xj) +O(h4)︸ ︷︷ ︸

τ(xj)

(4)

Talk at PSI, October 22, 2019 10/29



Motivation 1D case 2D case 3D case

The 1D case: local truncation error (cont.)

Using the Taylor series expansion

u(x ± h) = u(x)± hu′(x) +
h2

2
u′′(x)± h3

6
u′′′(x) +

h4

24
u′′′′(x) +O(h5)

we obtain

u(xj−1)− 2u(xj) + u(xj+1) = h2u′′(xj) +
h4

12
u′′′′(xj) +O(h6)

or, using −u′′(x) = f (x),

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= f (xj)−

h2

12
u′′′′(xj) +O(h4)︸ ︷︷ ︸

τ(xj)

(4)
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The 1D case: global error

−uj−1 + 2uj − uj+1

h2
= f (xj). (5)

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= −u′′(xj) + τ(xj). (6)

Subtracting (5) from (6) we get for the error e(xj) = u(xj)− uj

h−2Tne = τ .

So, the L2-error behaves like the local truncation error since

‖h2T−1n ‖2 < C for all h (or n).

C−1 is a lower bound for the smallest eigenvalue of h−2Tn.
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The 1D case: Improving accuracy

1. Use longer stencil

1

12h2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) = f (xj)

2.
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The 1D case: Improving accuracy

1. Use longer stencil

1

12h2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) = f (xj)

2. Closer look at truncation error

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= −u′′(xj)+τ(xj).
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The 1D case: Improving accuracy

1. Use longer stencil

1

12h2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) = f (xj)

2. Closer look at truncation error

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= −u′′(xj)−

h2

12
u′′′′(xj) +O(h4)
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The 1D case: Improving accuracy

1. Use longer stencil

1

12h2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) = f (xj)

2. Closer look at truncation error

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= −u′′(xj)−

h2

12
u′′′′(xj) +O(h4)

Replace finite difference stencil by

−uj−1 + 2uj − uj+1

h2
= f (xj) +

h2

12
f ′′(xj) (7)
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The 1D case: Improving accuracy

1. Use longer stencil

1

12h2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) = f (xj)

2. Closer look at truncation error

−u(xj−1) + 2u(xj)− u(xj+1)

h2
= −u′′(xj)−

h2

12
u′′′′(xj) +O(h4)

Replace finite difference stencil by

−uj−1 + 2uj − uj+1

h2
= f (xj) +

h2

12
f ′′(xj) (7)

or

−uj−1 + 2uj − uj+1

h2
= f (xj) +

1

12
(f (xj−1)− 2f (xj) + f (xj+1))

(8)
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The 1D case: Matlab demo

generate convergence plot1D
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The 2D case: problem statement

• Rectangle Ω = (0, ax)× (0, ay )

• Poisson equation

−∇2u(x , y) = f (x , y) in Ω, u = 0 on ∂Ω. (9)

• Rectangular mesh: nx + 2× ny + 2 grid points (incl. boundary)

• Mesh widths: hx = ax/(nx + 1) and hy = ay/(ny + 1)

• 5-point stencil is most used approximation of the Laplacian

• Approximation uij ≈ u(xi , yj)

• Approximate Poisson equation by

−ui−1,j + 2uij − ui+1,j

h2x
+
−ui ,j−1 + 2uij − ui ,j+1

h2y
= f (xi , yj)

(10)
for 0 < i ≤ nx , 0 < j ≤ ny .
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The 2D case: stencil

Often, the discretized Poisson equation is displayed as a stencil

which shows nicely the five involved grid points with their weights.
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The 2D case: linear system

Collect the uij/f (xi , yj) in a vector u, f ∈ Rnxny .

The nxny equations in (10) can be collected in matrix form(
1

h2x
Iny ⊗ Tnx +

1

h2y
Tny ⊗ Inx

)
u = f , (11)

where ⊗ denotes Kronecker product. Then, (11) can be written as

(Qny ⊗Qnx )(
1

h2x
Iny ⊗Λnx +

1

h2y
Λny ⊗ Inx )(QT

ny ⊗QT
nx )u = f . (12)

Matrix in the middle is diagonal.

With n = nxny , (12) can be solved with O(n log n) flops, if FFT is
applicable.
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The 2D case: truncation error

Local truncation error for 5-point stencil is

−∇2
5u(x , y)− f (x , y) = −h2x

12
∂4xu(x , y)−

h2y
12
∂4yu(x , y)+O(h4x +h4y ).

Can we do better in 2D as well?
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The 2D case: improving accuracy

Define a 9-point (compact) stencil

∇2
9ui ,j ≡ ∇2

5ui ,j +
1

12

(
4ui ,j − 2(ui+1,j + ui−1,j + ui ,j+1 + ui ,j−1)

+ ui+1,j+1 + ui−1,j+1 + ui+1,j−1 + ui−1,j−1

)( 1

h2x
+

1

h2y

)
.

For the local truncation error of the Poisson equation we get

−∇2
9u(x , y)− f (x , y) =− h2x

12

(
∂4xu(x , y) + ∂2x∂

2
yu(x , y)

)
−
h2y
12

(
∂2x∂

2
yu(x , y) + ∂4yu(x , y)

)
+O((h2x + h2y )2),

which does not look like an improvement w.r.t. the 5-pt stencil.
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The 2D case: improving accuracy (cont.)

BUT

−∇2
9u(x , y)− f (x , y) =− h2x

12

(
∂4xu(x , y) + ∂2x∂

2
yu(x , y)

)
−
h2y
12

(
∂2x∂

2
yu(x , y) + ∂4yu(x , y)

)
+O((h2x + h2y )2)
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The 2D case: improving accuracy (cont.)

BUT

−∇2
9u(x , y)− f (x , y) =− h2x

12

(
∂4xu(x , y) + ∂2x∂

2
yu(x , y)

)
−
h2y
12

(
∂2x∂

2
yu(x , y) + ∂4yu(x , y)

)
+O((h2x + h2y )2)

= −h2x
12

(
∂2x (∂2xu(x , y) + ∂2yu(x , y))

)
−
h2y
12

(
∂2y (∂2xu(x , y) + ∂2yu(x , y))

)
+ · · ·
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The 2D case: improving accuracy (cont.)

BUT

−∇2
9u(x , y)− f (x , y) =− h2x

12

(
∂4xu(x , y) + ∂2x∂

2
yu(x , y)

)
−
h2y
12

(
∂2x∂

2
yu(x , y) + ∂4yu(x , y)

)
+O((h2x + h2y )2)

= −h2x
12

(
∂2x (∂2xu(x , y) + ∂2yu(x , y))

)
−
h2y
12

(
∂2y (∂2xu(x , y) + ∂2yu(x , y))

)
+ · · ·

= −h2x
12

∂2x∇2u(x , y)−
h2y
12

∂2y∇2u(x , y) + · · ·
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The 2D case: improving accuracy (cont.)

BUT

−∇2
9u(x , y)− f (x , y) =− h2x

12

(
∂4xu(x , y) + ∂2x∂

2
yu(x , y)

)
−
h2y
12

(
∂2x∂

2
yu(x , y) + ∂4yu(x , y)

)
+O((h2x + h2y )2)

= −h2x
12

(
∂2x (∂2xu(x , y) + ∂2yu(x , y))

)
−
h2y
12

(
∂2y (∂2xu(x , y) + ∂2yu(x , y))

)
+ · · ·

= −h2x
12

∂2x∇2u(x , y)−
h2y
12

∂2y∇2u(x , y) + · · ·

=
h2x
12

∂2x f (x , y) +
h2y
12

∂2y f (x , y) +O((h2x + h2y )2)
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The 2D case: improving accuracy (cont.)

If the second derivatives of f not available or too expensive to
compute, replace them by finite differences:

A fourth order local truncation error is the best one can get in 2D
by compact FD (Settle et al. SINUM 2013).
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The 2D case: linear system for compact FD

The matrix form of the stencil before is(
1

h2x
Iny ⊗ Tnx +

1

h2y
Tny ⊗ Inx −

1

12

(
1

h2x
+

1

h2y

)
Tny ⊗ Tnx

)
u

=

(
I − 1

12
(Iny ⊗ Tnx + Tny ⊗ Inx )

)
f

Using the spectral decompositions of the matrices Tnx , Tny gives

u = (Qny ⊗Qnx )

(
Iny ⊗Λnx + Λny ⊗ Inx −

h2x + h2y
12

Λny ⊗Λnx

)−1
×

× h2xh
2
y

(
I − 1

12
(Iny ⊗Λnx + Λny ⊗ Inx )

)
(QT

ny ⊗QT
nx )f

In the middle there is again a diagonal matrix.
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The 2D case: Matlab demo

generate convergence plot2D
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The 3D case: problem statement

• Cuboid Ω = (0, ax)× (0, ay )× (0, az)

• Poisson equation

−∇2u(x , y , z) = f (x , y , z) in Ω, u = 0 on ∂Ω. (13)

• Rectangular mesh: nx +2× ny +2× nz +2 grid points

• Mesh widths: hx , hy , hz
• 7-point stencil is standard approximation of the Laplacian

• Approximation uij ≈ u(xi , yj)

• In interior nxnynz grid points approximate Poisson eq. by

−ui−1,j ,k + 2uijk − ui+1,j ,k

h2x
+
−ui ,j−1,k + 2uijk − ui ,j+1,k

h2y

+
−ui ,j ,k−1 + 2uijk − ui ,j ,k+1

h2z
= f (xi , yj , zk)
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The 3D case: linear system for the 7-point stencil

Collect values uijk , f (xi , yj , zk) in vectors u, f ∈ Rnxnynz , similarly
as in the 2D case. Then, the matrix form of above equations is(

1

h2x
Inz ⊗ Iny ⊗ Tnx +

1

h2y
Inz ⊗ Tny ⊗ Inx +

1

h2z
Tnz ⊗ Iny ⊗ Inx

)
u = f .

Using the spectral decomposition of the T ’s this becomes

(Qnz ⊗Qny ⊗Qnx )(
1

h2x
Inz ⊗ Iny ⊗Λnx +

1

h2y
Inz ⊗Λny ⊗ Inx +

1

h2z
Λnz ⊗ Iny ⊗ Inx

)
(QT

nz ⊗QT
ny ⊗QT

nx ) u = f .

The diagonal matrix in the middle can be precomputed.
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The 3D case: linear system for 4th order 19-point stencil

Cf. Spotz&Carey

Talk at PSI, October 22, 2019 25/29



Motivation 1D case 2D case 3D case

The 3D case: linear system for 4th order 19-point stencil
(cont.)

The matrix form of this stencil is(
1

h2x
Inz ⊗ Iny ⊗ Tnx +

1

h2y
Inz ⊗ Tny ⊗ Inx +

1

h2z
Tnz ⊗ Iny ⊗ Inx

− 1

12

(
1

h2x
+

1

h2y

)
Inz ⊗ Tny ⊗ Tnx −

1

12

(
1

h2x
+

1

h2z

)
Tnz ⊗ Iny ⊗ Tnx

− 1

12

(
1

h2y
+

1

h2z

)
Tnz ⊗ Tny ⊗ Inx

)
u

=

(
I − 1

12
(Inz ⊗ Iny ⊗ Tnx + Inz ⊗ Tny ⊗ Inx + Tnz ⊗ Iny ⊗ Inx )

)
f .

Remark: Spotz&Carey also give a O(h6) 27-pt stencil for the Laplacian

that does not lead to a compact stencil for the Poisson equation, though.
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The 3D case: numerical example

ax = 1.1, ay = 1.0, az = 0.9,

f (x , y , z) = π2
(

1

a2x
+

9

a2y
+

25

a2z

)
sin(

πx

ax
) sin(

3πy

ay
) sin(

5πz

az
).

u(x , y , z) = sin(πx/ax) sin(3πy/ay ) sin(5πz/az).

in the Matlab code the approximation error is plotted versus the
mesh width h ∼ 1/n. The norm of the error is computed as

‖e‖ =

√√√√ 1

nxnynz

nx∑
i=1

ny∑
j=1

nz∑
k=1

|ui ,j ,k − u(xi , yj , zk)|2.

In this example we have n = nx = ny = nz .
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The 3D case: Matlab demo

generate convergence plot3D

Talk at PSI, October 22, 2019 28/29



Motivation 1D case 2D case 3D case

Conclusions

• High-order methods can generate accurate solutions on coarse
grids

• Solutions have to be smooth enough

• Matrices get denser as order increases, but we use its spectral
decomposition and FFT

• Class of operators is limited, but Laplacian is fine

• In 3D 6th order is possible but the stencil for the right-hand
side is not compact anymore

• To use compact FD inside other software, the (input) data
has to be accurate
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