1D case 00000000 2D case 000000000

3D case 000000

1/29

On compact finite differences for the Poisson equation

Peter Arbenz, IT4I Ostrava/ETH Zurich

Talk at PSI, October 22, 2019

1D case 00000000 2D case 000000000

・ロト ・ 雪 ト ・ ヨ ト

э

2/29

3D case 000000

Motivation

1D Poisson problems

2D Poisson problems

3D Poisson problems

2D case 000000000

Introduction: Purpose of the talk

- Poisson equation on rectangular domains often solved by finite differences (5-point stencil).
 Ditto in 3D with the 7-point stencil.
- These methods converge with $\mathcal{O}(h^2)$ in the mesh width h
- Higher orders of accuracy requires bigger stencils or more brain.
- Higher orders of accuracy lead to (much) smaller linear systems of equations for the same accuracy.
- We discuss how to get fourth order compact finite difference schemes.
- Emphasis on fast Poisson solvers: the solution is obtained by the FFT.

1D case 00000000 2D case 000000000 3D case 000000

References

- L. Collatz. The Numerical Treatment of Differential Equations. Springer, 3rd ed., 1960. (→ Mehrstellenmethode)
- 2. R. J. LeVeque. *Finite Difference Methods for Ordinary and Partial Differential Equations.* SIAM, 2007.
- W. F. Spotz and G. F. Carey. A high-order compact formulation for the 3D Poisson equation. *Numer. Methods Partial Differ. Equations*, 12:235–243, 1996.
- S. O. Settle, C. C. Douglas, I. Kim, and D. Sheen. On the derivation of highest-order compact finite difference schemes for the one- and two-dimensional Poisson equation with Dirichlet boundary conditions. *SINUM*, 51:2470–2490, 2013.

1D case •0000000 2D case 000000000 3D case 000000

The 1D case: problem statement

- Interval *I* = (0, *a*)
- Poisson equation:

$$-u''(x) = f(x), \quad 0 < x < a, \qquad u(0) = u(a) = 0.$$

- Equidistant mesh $0 = x_0 < x_1 < \cdots < x_n < x_{n+1} = a$.
- Mesh width $h = x_j x_{j-1} = a/(n+1)$.
- Approximation $u_j \approx u(x_j)$.
- Approximate Poisson equation by

$$\frac{-u_{j-1}+2u_j-u_{j+1}}{h^2}=f(x_j), \qquad 1\le j\le n.$$
(1)

1D case ○●○○○○○○ 2D case 000000000 3D case 000000

The 1D case: linear system

The n equations in (1) can be collected in matrix equation

$$\frac{1}{h^2} \mathbf{T}_n \mathbf{u} = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_{n-1}) \\ f(x_n) \end{bmatrix} = \mathbf{f}.$$

 $\boldsymbol{T}_n \in \mathbb{R}^{n imes n}$ has the spectral decomposition

$$\boldsymbol{T}_n = \boldsymbol{Q}_n \boldsymbol{\Lambda}_n \boldsymbol{Q}_n^T, \qquad (2)$$

with diagonal Λ_n

$$\Lambda_n = \operatorname{diag}(\lambda_1^{(n)}, \dots, \lambda_n^{(n)}), \qquad \lambda_k^{(n)} = 4\sin^2 \frac{k\pi}{2(n+1)}.$$
 (3)

1D case 00000000 2D case 000000000 3D case 000000

The 1D case: linear system (cont.)

 $oldsymbol{Q}_n$ is orthogonal, i.e., $oldsymbol{Q}_n^{-1} = oldsymbol{Q}_n^{\, au}$, with elements

$$q_{jk} = \left(\frac{2}{n+1}\right)^{1/2} \sin \frac{jk\pi}{n+1}.$$

Multiplying with Q_n or Q_n^T is related to the Fourier transform.

If *n* is chosen properly then the Fast Sine Transform (\sim Fast Fourier Transform) can be employed to solve (1).

This does not make sense in the 1D case, though.

1D case 00000000 2D case 000000000

★ロト ★課 ト ★注 ト ★注 ト 一注

3D case 000000

8/29

The 1D case: local truncation error

The local truncation error is obtained by plugging the exact solution in the FD formula,

$$\frac{-u(x-h) + 2u(x) - u(x+h)}{h^2} - f(x) = \tau(x;h)$$

1D case 00000000 2D case 000000000 3D case 000000

The 1D case: local truncation error (cont.)

Using the Taylor series expansion

$$u(x \pm h) = u(x) \pm hu'(x) + \frac{h^2}{2}u''(x) \pm \frac{h^3}{6}u'''(x) + \frac{h^4}{24}u'''(x) + O(h^5)$$

we obtain

$$u(x_{j-1}) - 2u(x_j) + u(x_{j+1})$$

$$= u(x_j) - hu'(x_j) + \frac{h^2}{2}u''(x_j) - \frac{h^3}{6}u'''(x_j) + \frac{h^4}{24}u''''(x_j) + \cdots$$

$$- 2u(x_j)$$

$$+ u(x_j) + hu'(x_j) + \frac{h^2}{2}u''(x_j) + \frac{h^3}{6}u'''(x_j) + \frac{h^4}{24}u''''(x_j) + \cdots$$

$$= h^2u''(x_j) + \frac{h^4}{12}u''''(x_j) + \mathcal{O}(h^6)$$

Talk at PSI, October 22, 2019

1D case 00000000 2D case 000000000

3D case 000000

10/29

The 1D case: local truncation error (cont.)

Using the Taylor series expansion

$$u(x \pm h) = u(x) \pm hu'(x) + \frac{h^2}{2}u''(x) \pm \frac{h^3}{6}u'''(x) + \frac{h^4}{24}u'''(x) + \mathcal{O}(h^5)$$

we obtain

$$u(x_{j-1}) - 2u(x_j) + u(x_{j+1}) = h^2 u''(x_j) + \frac{h^4}{12} u'''(x_j) + O(h^6)$$

or, using -u''(x) = f(x),

$$\frac{-u(x_{j-1}) + 2u(x_j) - u(x_{j+1})}{h^2} = f(x_j) \underbrace{-\frac{h^2}{12}u'''(x_j) + \mathcal{O}(h^4)}_{\tau(x_i)} \quad (4)$$

1D case 00000000 2D case 000000000

3D case 000000

10/29

The 1D case: local truncation error (cont.)

Using the Taylor series expansion

$$u(x \pm h) = u(x) \pm hu'(x) + \frac{h^2}{2}u''(x) \pm \frac{h^3}{6}u'''(x) + \frac{h^4}{24}u'''(x) + \mathcal{O}(h^5)$$

we obtain

$$u(x_{j-1}) - 2u(x_j) + u(x_{j+1}) = h^2 u''(x_j) + \frac{h^4}{12} u''''(x_j) + O(h^6)$$

or, using -u''(x) = f(x),

$$\frac{-u(x_{j-1}) + 2u(x_j) - u(x_{j+1})}{h^2} = f(x_j) \underbrace{-\frac{h^2}{12}u''''(x_j) + \mathcal{O}(h^4)}_{\tau(x_j)} \quad (4)$$

1D case 00000000

2D case

3D case 000000

The 1D case: global error

$$\frac{-u_{j-1}+2u_j-u_{j+1}}{h^2}=f(x_j).$$
 (5)

$$\frac{-u(x_{j-1})+2u(x_j)-u(x_{j+1})}{h^2}=-u''(x_j)+\tau(x_j).$$
 (6)

Subtracting (5) from (6) we get for the error $e(x_j) = u(x_j) - u_j$

$$h^{-2} oldsymbol{T}_n oldsymbol{e} = oldsymbol{ au}$$

So, the L_2 -error behaves like the local truncation error since

$$\|h^2 \boldsymbol{T}_n^{-1}\|_2 < C$$
 for all h (or n).

 C^{-1} is a lower bound for the smallest eigenvalue of $h^{-2}T_n$.

1D case 00000000 2D case 000000000

★ロト ★課 ト ★注 ト ★注 ト 一注

3D case 000000

12/29

The 1D case: Improving accuracy

1. Use longer stencil

$$\frac{1}{12h^2}(-u_{j-2}+16u_{j-1}-30u_j+16u_{j+1}-u_{j+2})=f(x_j)$$

2.

1D case 00000000 2D case 000000000

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

3D case 000000

12/29

The 1D case: Improving accuracy

1. Use longer stencil

$$\frac{1}{12h^2}(-u_{j-2}+16u_{j-1}-30u_j+16u_{j+1}-u_{j+2})=f(x_j)$$

2. Closer look at truncation error

$$\frac{-u(x_{j-1})+2u(x_j)-u(x_{j+1})}{h^2}=-u''(x_j)+\tau(x_j).$$

1D case 00000000 2D case 000000000 3D case 000000

The 1D case: Improving accuracy

1. Use longer stencil

$$\frac{1}{12h^2}(-u_{j-2}+16u_{j-1}-30u_j+16u_{j+1}-u_{j+2})=f(x_j)$$

2. Closer look at truncation error

$$\frac{-u(x_{j-1})+2u(x_j)-u(x_{j+1})}{h^2}=-u''(x_j)-\frac{h^2}{12}u''''(x_j)+\mathcal{O}(h^4)$$

1D case 00000000 2D case 000000000 3D case 000000

12/29

The 1D case: Improving accuracy

1. Use longer stencil

$$\frac{1}{12h^2}(-u_{j-2}+16u_{j-1}-30u_j+16u_{j+1}-u_{j+2})=f(x_j)$$

2. Closer look at truncation error

$$\frac{-u(x_{j-1})+2u(x_j)-u(x_{j+1})}{h^2}=-u''(x_j)-\frac{h^2}{12}u''''(x_j)+\mathcal{O}(h^4)$$

Replace finite difference stencil by

$$\frac{-u_{j-1}+2u_j-u_{j+1}}{h^2}=f(x_j)+\frac{h^2}{12}f''(x_j)$$
(7)

<ロ> (四) (四) (三) (三) (三)

1D case 00000000 2D case 000000000 3D case 000000

The 1D case: Improving accuracy

1. Use longer stencil

$$\frac{1}{12h^2}(-u_{j-2}+16u_{j-1}-30u_j+16u_{j+1}-u_{j+2})=f(x_j)$$

2. Closer look at truncation error

$$\frac{-u(x_{j-1})+2u(x_j)-u(x_{j+1})}{h^2}=-u''(x_j)-\frac{h^2}{12}u'''(x_j)+\mathcal{O}(h^4)$$

Replace finite difference stencil by

$$\frac{-u_{j-1}+2u_j-u_{j+1}}{h^2}=f(x_j)+\frac{h^2}{12}f''(x_j)$$
(7)

or

1D case 0000000 2D case 000000000

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣

3D case 000000

13/29

The 1D case: Matlab demo

generate_convergence_plot1D

1D case 00000000 2D case •00000000 3D case 000000

The 2D case: problem statement

- Rectangle $\Omega = (0, a_x) \times (0, a_y)$
- Poisson equation

$$-\nabla^2 u(x,y) = f(x,y) \quad \text{in } \Omega, \qquad u = 0 \text{ on } \partial\Omega.$$
 (9)

- Rectangular mesh: $n_x + 2 \times n_y + 2$ grid points (incl. boundary)
- Mesh widths: $h_x = a_x/(n_x+1)$ and $h_y = a_y/(n_y+1)$
- 5-point stencil is most used approximation of the Laplacian
- Approximation $u_{ij} \approx u(x_i, y_j)$
- Approximate Poisson equation by

$$\frac{-u_{i-1,j}+2u_{ij}-u_{i+1,j}}{h_x^2}+\frac{-u_{i,j-1}+2u_{ij}-u_{i,j+1}}{h_y^2}=f(x_i,y_j)$$
(10)

for $0 < i \le n_x, 0 < j \le n_y$.

1D case 00000000 2D case 00000000

<ロ> (四) (四) (三) (三) (三)

3D case 000000

15/29

The 2D case: stencil

Often, the discretized Poisson equation is displayed as a stencil

which shows nicely the five involved grid points with their weights.

1D case 00000000 2D case 000000000 3D case 000000

The 2D case: linear system

Collect the $u_{ij}/f(x_i, y_j)$ in a vector $\boldsymbol{u}, \boldsymbol{f} \in \mathbb{R}^{n_x n_y}$.

The $n_x n_y$ equations in (10) can be collected in matrix form

$$\left(\frac{1}{h_x^2}\boldsymbol{I}_{n_y}\otimes\boldsymbol{T}_{n_x}+\frac{1}{h_y^2}\boldsymbol{T}_{n_y}\otimes\boldsymbol{I}_{n_x}\right)\boldsymbol{u}=\boldsymbol{f},\qquad(11)$$

where \otimes denotes Kronecker product. Then, (11) can be written as

$$(\boldsymbol{Q}_{n_y} \otimes \boldsymbol{Q}_{n_x})(\frac{1}{h_x^2}\boldsymbol{I}_{n_y} \otimes \boldsymbol{\Lambda}_{n_x} + \frac{1}{h_y^2}\boldsymbol{\Lambda}_{n_y} \otimes \boldsymbol{I}_{n_x})(\boldsymbol{Q}_{n_y}^T \otimes \boldsymbol{Q}_{n_x}^T)\boldsymbol{u} = \boldsymbol{f}.$$
(12)

Matrix in the middle is diagonal.

With $n = n_x n_y$, (12) can be solved with $O(n \log n)$ flops, if FFT is applicable.

1D case 00000000 2D case 000000000 3D case 000000

17/29

The 2D case: truncation error

Local truncation error for 5-point stencil is

$$-\nabla_{5}^{2}u(x,y) - f(x,y) = -\frac{h_{x}^{2}}{12}\partial_{x}^{4}u(x,y) - \frac{h_{y}^{2}}{12}\partial_{y}^{4}u(x,y) + \mathcal{O}(h_{x}^{4} + h_{y}^{4}).$$

Can we do better in 2D as well?

1D case 00000000 2D case 000000000 3D case 000000

The 2D case: improving accuracy

Define a 9-point (compact) stencil

$$\nabla_{9}^{2}u_{i,j} \equiv \nabla_{5}^{2}u_{i,j} + \frac{1}{12} \Big(4u_{i,j} - 2(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1}) \\ + u_{i+1,j+1} + u_{i-1,j+1} + u_{i+1,j-1} + u_{i-1,j-1} \Big) \left(\frac{1}{h_{x}^{2}} + \frac{1}{h_{y}^{2}} \right).$$

For the local truncation error of the Poisson equation we get

$$\begin{aligned} -\nabla_{9}^{2}u(x,y) - f(x,y) &= -\frac{h_{x}^{2}}{12} \left(\partial_{x}^{4}u(x,y) + \partial_{x}^{2}\partial_{y}^{2}u(x,y) \right) \\ &- \frac{h_{y}^{2}}{12} \left(\partial_{x}^{2}\partial_{y}^{2}u(x,y) + \partial_{y}^{4}u(x,y) \right) + \mathcal{O}((h_{x}^{2} + h_{y}^{2})^{2}), \end{aligned}$$

which does not look like an improvement w.r.t. the 5-pt stencil.

1D case 00000000 2D case 0000000000

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

3D case 000000

19/29

The 2D case: improving accuracy (cont.)

BUT

$$-\nabla_{9}^{2}u(x,y) - f(x,y) = -\frac{h_{x}^{2}}{12} \left(\partial_{x}^{4}u(x,y) + \partial_{x}^{2}\partial_{y}^{2}u(x,y) \right) \\ -\frac{h_{y}^{2}}{12} \left(\partial_{x}^{2}\partial_{y}^{2}u(x,y) + \partial_{y}^{4}u(x,y) \right) + \mathcal{O}((h_{x}^{2} + h_{y}^{2})^{2})$$

1D case 00000000 2D case 0000000000

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

3D case 000000

19/29

The 2D case: improving accuracy (cont.)

BUT

$$\begin{aligned} -\nabla_{9}^{2}u(x,y) - f(x,y) &= -\frac{h_{x}^{2}}{12} \left(\partial_{x}^{4}u(x,y) + \partial_{x}^{2}\partial_{y}^{2}u(x,y) \right) \\ &- \frac{h_{y}^{2}}{12} \left(\partial_{x}^{2}\partial_{y}^{2}u(x,y) + \partial_{y}^{4}u(x,y) \right) + \mathcal{O}((h_{x}^{2} + h_{y}^{2})^{2}) \\ &= -\frac{h_{x}^{2}}{12} \left(\partial_{x}^{2}(\partial_{x}^{2}u(x,y) + \partial_{y}^{2}u(x,y)) \right) \\ &- \frac{h_{y}^{2}}{12} \left(\partial_{y}^{2}(\partial_{x}^{2}u(x,y) + \partial_{y}^{2}u(x,y)) \right) + \cdots \end{aligned}$$

1D case 00000000 2D case 0000000000 3D case 000000

The 2D case: improving accuracy (cont.)

BUT

$$\begin{aligned} -\nabla_{9}^{2}u(x,y) - f(x,y) &= -\frac{h_{x}^{2}}{12} \left(\partial_{x}^{4}u(x,y) + \partial_{x}^{2}\partial_{y}^{2}u(x,y) \right) \\ &- \frac{h_{y}^{2}}{12} \left(\partial_{x}^{2}\partial_{y}^{2}u(x,y) + \partial_{y}^{4}u(x,y) \right) + \mathcal{O}((h_{x}^{2} + h_{y}^{2})^{2}) \\ &= -\frac{h_{x}^{2}}{12} \left(\partial_{x}^{2}(\partial_{x}^{2}u(x,y) + \partial_{y}^{2}u(x,y)) \right) \\ &- \frac{h_{y}^{2}}{12} \left(\partial_{y}^{2}(\partial_{x}^{2}u(x,y) + \partial_{y}^{2}u(x,y)) \right) + \cdots \\ &= -\frac{h_{x}^{2}}{12} \left(\partial_{x}^{2}\nabla^{2}u(x,y) - \frac{h_{y}^{2}}{12} \left(\partial_{y}^{2}\nabla^{2}u(x,y) + \cdots \right) \right) \end{aligned}$$

1D case 00000000 2D case 0000000000 3D case 000000

The 2D case: improving accuracy (cont.)

BUT

$$\begin{aligned} -\nabla_{9}^{2}u(x,y) - f(x,y) &= -\frac{h_{x}^{2}}{12} \left(\partial_{x}^{4}u(x,y) + \partial_{x}^{2}\partial_{y}^{2}u(x,y) \right) \\ &- \frac{h_{y}^{2}}{12} \left(\partial_{x}^{2}\partial_{y}^{2}u(x,y) + \partial_{y}^{4}u(x,y) \right) + \mathcal{O}((h_{x}^{2} + h_{y}^{2})^{2}) \\ &= -\frac{h_{x}^{2}}{12} \left(\partial_{x}^{2}(\partial_{x}^{2}u(x,y) + \partial_{y}^{2}u(x,y)) \right) \\ &- \frac{h_{y}^{2}}{12} \left(\partial_{y}^{2}(\partial_{x}^{2}u(x,y) + \partial_{y}^{2}u(x,y)) \right) + \cdots \\ &= -\frac{h_{x}^{2}}{12} \left(\partial_{x}^{2}\nabla^{2}u(x,y) - \frac{h_{y}^{2}}{12} \left(\partial_{y}^{2}\nabla^{2}u(x,y) + \cdots \right) \right) \\ &= -\frac{h_{x}^{2}}{12} \left(\partial_{x}^{2}f(x,y) + \frac{h_{y}^{2}}{12} \left(\partial_{y}^{2}f(x,y) + \mathcal{O}((h_{x}^{2} + h_{y}^{2})^{2}) \right) \right) \end{aligned}$$

2D case 0000000000

The 2D case: improving accuracy (cont.)

If the second derivatives of f not available or too expensive to compute, replace them by finite differences:

A fourth order local truncation error is the best one can get in 2D by compact FD (Settle et al. SINUM 2013).

1D case 00000000 2D case 000000000 3D case 000000

The 2D case: linear system for compact FD

The matrix form of the stencil before is

$$\begin{pmatrix} \frac{1}{h_x^2} \mathbf{I}_{n_y} \otimes \mathbf{T}_{n_x} + \frac{1}{h_y^2} \mathbf{T}_{n_y} \otimes \mathbf{I}_{n_x} - \frac{1}{12} \left(\frac{1}{h_x^2} + \frac{1}{h_y^2} \right) \mathbf{T}_{n_y} \otimes \mathbf{T}_{n_x} \end{pmatrix} \mathbf{u} \\ = \left(\mathbf{I} - \frac{1}{12} (\mathbf{I}_{n_y} \otimes \mathbf{T}_{n_x} + \mathbf{T}_{n_y} \otimes \mathbf{I}_{n_x}) \right) \mathbf{f}$$

Using the spectral decompositions of the matrices T_{n_x} , T_{n_y} gives

$$\boldsymbol{u} = (\boldsymbol{Q}_{n_y} \otimes \boldsymbol{Q}_{n_x}) \left(\boldsymbol{I}_{n_y} \otimes \boldsymbol{\Lambda}_{n_x} + \boldsymbol{\Lambda}_{n_y} \otimes \boldsymbol{I}_{n_x} - \frac{h_x^2 + h_y^2}{12} \boldsymbol{\Lambda}_{n_y} \otimes \boldsymbol{\Lambda}_{n_x} \right)^{-1} \times \\ \times h_x^2 h_y^2 \left(\boldsymbol{I} - \frac{1}{12} (\boldsymbol{I}_{n_y} \otimes \boldsymbol{\Lambda}_{n_x} + \boldsymbol{\Lambda}_{n_y} \otimes \boldsymbol{I}_{n_x}) \right) (\boldsymbol{Q}_{n_y}^T \otimes \boldsymbol{Q}_{n_x}^T) \boldsymbol{f}$$

In the middle there is again a diagonal matrix.

1D case 00000000 2D case 00000000

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣

3D case 000000

22/29

The 2D case: Matlab demo

generate_convergence_plot2D

1D case 00000000 2D case 000000000 3D case •00000

The 3D case: problem statement

- Cuboid $\Omega = (0, a_x) \times (0, a_y) \times (0, a_z)$
- Poisson equation

$$-\nabla^2 u(x, y, z) = f(x, y, z) \quad \text{in } \Omega, \qquad u = 0 \text{ on } \partial\Omega.$$
 (13)

- Rectangular mesh: $n_x + 2 \times n_y + 2 \times n_z + 2$ grid points
- Mesh widths: h_x , h_y , h_z
- 7-point stencil is standard approximation of the Laplacian
- Approximation $u_{ij} \approx u(x_i, y_j)$
- In interior $n_x n_y n_z$ grid points approximate Poisson eq. by

$$\frac{-u_{i-1,j,k} + 2u_{ijk} - u_{i+1,j,k}}{h_x^2} + \frac{-u_{i,j-1,k} + 2u_{ijk} - u_{i,j+1,k}}{h_y^2} + \frac{-u_{i,j,k-1} + 2u_{ijk} - u_{i,j,k+1}}{h_z^2} = f(x_i, y_j, z_k)$$

2D case 000000000

3D case 000000

24/29

The 3D case: linear system for the 7-point stencil

Collect values u_{ijk} , $f(x_i, y_j, z_k)$ in vectors $\boldsymbol{u}, \boldsymbol{f} \in \mathbb{R}^{n_x n_y n_z}$, similarly as in the 2D case. Then, the matrix form of above equations is

$$\left(\frac{1}{h_x^2}\boldsymbol{I}_{n_z}\otimes\boldsymbol{I}_{n_y}\otimes\boldsymbol{T}_{n_x}+\frac{1}{h_y^2}\boldsymbol{I}_{n_z}\otimes\boldsymbol{T}_{n_y}\otimes\boldsymbol{I}_{n_x}+\frac{1}{h_z^2}\boldsymbol{T}_{n_z}\otimes\boldsymbol{I}_{n_y}\otimes\boldsymbol{I}_{n_x}\right)\boldsymbol{u}=\boldsymbol{f}.$$

Using the spectral decomposition of the T's this becomes

$$\begin{aligned} (\boldsymbol{Q}_{n_z} \otimes \boldsymbol{Q}_{n_y} \otimes \boldsymbol{Q}_{n_x}) \\ & \left(\frac{1}{h_x^2} \boldsymbol{I}_{n_z} \otimes \boldsymbol{I}_{n_y} \otimes \boldsymbol{\Lambda}_{n_x} + \frac{1}{h_y^2} \boldsymbol{I}_{n_z} \otimes \boldsymbol{\Lambda}_{n_y} \otimes \boldsymbol{I}_{n_x} + \frac{1}{h_z^2} \boldsymbol{\Lambda}_{n_z} \otimes \boldsymbol{I}_{n_y} \otimes \boldsymbol{I}_{n_x} \right) \\ & (\boldsymbol{Q}_{n_z}^T \otimes \boldsymbol{Q}_{n_y}^T \otimes \boldsymbol{Q}_{n_x}^T) \boldsymbol{u} = \boldsymbol{f}. \end{aligned}$$

The diagonal matrix in the middle can be precomputed.

Motivation	1D case	2D case	3D case
0000	0000000	00000000	000000

The 3D case: linear system for 4th order 19-point stencil

25/29

Cf. Spotz&Carey

1D case 00000000 2D case 000000000 3D case 000000

The 3D case: linear system for 4th order 19-point stencil (cont.)

The matrix form of this stencil is

$$\begin{pmatrix} \frac{1}{h_x^2} \mathbf{I}_{n_z} \otimes \mathbf{I}_{n_y} \otimes \mathbf{T}_{n_x} + \frac{1}{h_y^2} \mathbf{I}_{n_z} \otimes \mathbf{T}_{n_y} \otimes \mathbf{I}_{n_x} + \frac{1}{h_z^2} \mathbf{T}_{n_z} \otimes \mathbf{I}_{n_y} \otimes \mathbf{I}_{n_x} \\ &- \frac{1}{12} \left(\frac{1}{h_x^2} + \frac{1}{h_y^2} \right) \mathbf{I}_{n_z} \otimes \mathbf{T}_{n_y} \otimes \mathbf{T}_{n_x} - \frac{1}{12} \left(\frac{1}{h_x^2} + \frac{1}{h_z^2} \right) \mathbf{T}_{n_z} \otimes \mathbf{I}_{n_y} \otimes \mathbf{T}_{n_z} \\ &- \frac{1}{12} \left(\frac{1}{h_y^2} + \frac{1}{h_z^2} \right) \mathbf{T}_{n_z} \otimes \mathbf{T}_{n_y} \otimes \mathbf{I}_{n_x} \right) \mathbf{u} \\ &= \left(\mathbf{I} - \frac{1}{12} (\mathbf{I}_{n_z} \otimes \mathbf{I}_{n_y} \otimes \mathbf{T}_{n_x} + \mathbf{I}_{n_z} \otimes \mathbf{T}_{n_y} \otimes \mathbf{I}_{n_x} + \mathbf{T}_{n_z} \otimes \mathbf{I}_{n_y} \otimes \mathbf{I}_{n_x}) \right) \mathbf{f} \mathbf{u}$$

Remark: Spotz&Carey also give a $\mathcal{O}(h^6)$ 27-pt stencil for the Laplacian that does not lead to a compact stencil for the Poisson equation, though.

1D case 00000000 2D case 000000000 3D case 000000

The 3D case: numerical example

$$a_x = 1.1, \quad a_y = 1.0, \quad a_z = 0.9,$$

$$f(x, y, z) = \pi^2 \left(\frac{1}{a_x^2} + \frac{9}{a_y^2} + \frac{25}{a_z^2}\right) \sin(\frac{\pi x}{a_x}) \sin(\frac{3\pi y}{a_y}) \sin(\frac{5\pi z}{a_z}).$$

$$u(x, y, z) = \sin(\pi x/a_x) \sin(3\pi y/a_y) \sin(5\pi z/a_z).$$

in the Matlab code the approximation error is plotted versus the mesh width $h \sim 1/n$. The norm of the error is computed as

$$\|\boldsymbol{e}\| = \sqrt{\frac{1}{n_x n_y n_z} \sum_{i=1}^{n_x} \sum_{j=1}^{n_y} \sum_{k=1}^{n_z} |u_{i,j,k} - u(x_i, y_j, z_k)|^2}.$$

In this example we have $n = n_x = n_y = n_z$.

1D case 00000000 2D case 000000000

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣

3D case 000000

28/29

The 3D case: Matlab demo

generate_convergence_plot3D

1D case 00000000 2D case 000000000

3D case 000000

29/29

Conclusions

- High-order methods can generate accurate solutions on coarse grids
- Solutions have to be smooth enough
- Matrices get denser as order increases, but we use its spectral decomposition and FFT
- Class of operators is limited, but Laplacian is fine
- In 3D 6th order is possible but the stencil for the right-hand side is not compact anymore
- To use compact FD inside other software, the (input) data has to be accurate