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Introduction: Purpose of the talk

e Poisson equation on rectangular domains often solved by finite
differences (5-point stencil).
Ditto in 3D with the 7-point stencil.

e These methods converge with O(h?) in the mesh width h

e Higher orders of accuracy requires bigger stencils or more
brain.

e Higher orders of accuracy lead to (much) smaller linear
systems of equations for the same accuracy.

e We discuss how to get fourth order compact finite difference
schemes.

e Emphasis on fast Poisson solvers: the solution is obtained by
the FFT.
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The 1D case: problem statement

Interval | = (0, a)

Poisson equation:

—u"(x) =f(x), 0<x<a, u(0) = u(a) = 0.

Equidistant mesh 0 = xp < x3 < -+ < Xp < Xp41 = a.
Mesh width h = x; — xj_1 = a/(n + 1).

e Approximation u; = u(x;).

Approximate Poisson equation by

—Uj1 + 2Uj — Ujy1
h2

= f(XJ)’ 1<j<n (1)
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The 1D case: linear system

The n equations in (1) can be collected in matrix equation

2 -1 uy f(x1)
-1 2 -1 u» f(XQ)
1 1 _ _ ) . .
?Tnu = ﬁ . - . : = : = f
-1 2 -1 Up_1 f(xn-1)
-1 2 Un f(xn)

T, € R™" has the spectral decomposition

Tn = QnAnQnTa (2)
with diagonal A,
TN (n) () _ g2 KT
A, =diag(A;7, ... A7), Ay’ = 4sin 2+ 1) (3)
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The 1D case: linear system (cont.)

Q,, is orthogonal, i.e., Qn_l = Q,,T, with elements

1/2 .
gk = 2 sin Jkm .
J n+1 n+1

Multiplying with @, or @ is related to the Fourier transform.

If nis chosen properly then the Fast Sine Transform (~Fast
Fourier Transform) can be employed to solve (1).

This does not make sense in the 1D case, though.
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The 1D case: local truncation error

The local truncation error is obtained by plugging the exact
solution in the FD formula,

—u(x — h) +2u(x) — u(x + h)
h2

— f(x) =7(x; h)
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The 1D case: local truncation error (cont.)

Using the Taylor series expansion

/ h2 " h3 " h4 //// 5
u(x:l:h)zu(x):l:hu(x)—{—?u (x):lzgu (x)—|—24 (x) + O(h)
we obtain
u(og-1) — 2u(3) + u(x41)

/ h2 " h3 n h4 "

= u(x) — hu'(x) + 0" () = 5 um () + 5 0T 0g) + -
— 2u(x))
/ h2 ! h3 n h4 n
u(x) + hu' () + 07 () + = u () + 5 0 0g) + -
h4
_h2 //( )+ "”(Xj)—l—O(h6)

12
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The 1D case: local truncation error (cont.)
Using the Taylor series expansion
2 3 4

u(x & h) = u(x) £ hu'(x) + h—u"(x) + h—u’"(x) + = h

//// 5
2 6 24 (x) + O(h)

we obtain

u(xj1) — 2u() + u(xis1) = 2" (x5) + 1= 0" (x5) + O(KO)

12
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The 1D case: local truncation error (cont.)
Using the Taylor series expansion
2 3 4

u(x & h) = u(x) £ hu'(x) + h—u"(x) + h—u’"(x) + = h

//// 5
2 6 24 (x) + O(h)

we obtain

u(xj1) — 2u() + u(xis1) = 2" (x5) + 1= 0" (x5) + O(KO)

12
or, using —u"(x) = f(x),

~00g0) 32009) Zu050) gy I gy o) (4)

h2
7(X;)
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The 1D case: global error

—uj_1+2u; — uj41
i) (5)

—u(xj-1) + 2u(xj) — u(xj+1)
h2
Subtracting (5) from (6) we get for the error e(x;) = u(x;) — u;

= —u" () + 7(x). (6)

h>2T,e=r.
So, the Ls-error behaves like the local truncation error since
R T 2 < C forall h(or n).

C~!is a lower bound for the smallest eigenvalue of K2 T,.
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The 1D case: Improving accuracy

1. Use longer stencil

1

W(—uj_z + 16wu;_1 — 30u; + 16uj1 — uj+2) = f(XJ)
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The 1D case: Improving accuracy

1. Use longer stencil

1

W(—uj_z + 16u;_1 — 30u; + 16uj1 — uj+2) = f(XJ)
2. Closer look at truncation error

—u(xj—1) + 2u(x;) — u(xj41)
h2

= —u"(5)+7(x)-
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The 1D case: Improving accuracy

1. Use longer stencil

1

W(—uj_z + 16u;_1 — 30u; + 16uj1 — uj+2) = f(XJ)

2. Closer look at truncation error
2

—u(x-1) + ZZz(Xj) —ubg1) _ —u"(x) — %u’”’(x;) +O(h*)
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The 1D case: Improving accuracy

1. Use longer stencil

1

W(_Uj—2 + 16Uj—1 - 30UJ' + 16UJ'+1 _ Uj+2) — f(XJ)

2. Closer look at truncation error

—u(xj—1) 4+ 2u(x;) — u(xj+1) h?
] = J Jy+i) fu”(Xj) _ Eu////(xj) + 0(h4)
Replace finite difference stencil by
—ui—1+2u; — ujq1 h?
e =) + 51 (%) (7)
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The 1D case: Improving accuracy

1. Use longer stencil

1

12/72( ui—o + 16UJ 1— 3OUJ' + 16UJ'+1 — UJ'+2) = f(XJ)
2. Closer look at truncation error
—u(xj—1) + 2u(xj) — u(xj+1) h?
S TR IS fog) — " () + O
Replace finite difference stencil by
—ui—1+2u; — uj11 h?
g = f09) + 5" (%) (7)
or
—uj_1+2u; — Uiy 1
I = )+ 5 (Flg1) = 200) + F(x41))

(8)
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The 1D case: Matlab demo

generate_convergence_plotlD
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The 2D case: problem statement

Rectangle Q = (0, ax) x (0, a,)

e Poisson equation

—V2u(x,y) = f(x,y) inQ, u=0o0n02. (9)

Rectangular mesh: ny 42 x n, + 2 grid points (incl. boundary)
Mesh widths: h, = ax/(nx + 1) and h, = a,/(n, + 1)
5-point stencil is most used approximation of the Laplacian

e Approximation ujj =~ u(xj, yj)

e Approximate Poisson equation by

Ui QU — Uriq s —Ur QUi — U ;
u LJ +h2uU UI+1J + Ul’J ! +h2uU UI7J+1 = f(Xi7-)/j)
x y
(10)

for 0 <i<n,,0<j<ny.
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The 2D case: stencil

Often, the discretized Poisson equation is displayed as a stencil

1
h3
1 % % 1
2 hi [ M - hZ
_VEU(L?J)_ . ’ o Ou(z,y) = f(z,y)
1
2
Y

which shows nicely the five involved grid points with their weights.
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The 2D case: linear system
Collect the ujj/f(x;, y;) in a vector u, f € R™"™.

The nyn, equations in (10) can be collected in matrix form
1
h2l”y® T, + h2 Ty @b, |u=f, (11)
where ® denotes Kronecker product. Then, (11) can be written as

(Ony®onx)( Iny®AnX+ Any®lnx)(QT®OT)u—f (12)
y

Matrix in the middle is diagonal.

With n = ngny, (12) can be solved with O(nlog n) flops, if FFT is
applicable.
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The 2D case: truncation error

Local truncation error for 5-point stencil is

h2 h;
—VEU(X,y) - f(va) = _Eaiu(x7y)_ é@ﬁu(x,y)—i—(’)(hﬁ—i—hﬁ,)

Can we do better in 2D as well?
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The 2D case: improving accuracy
Define a 9-point (compact) stencil
2. o2 1
Vauij = Viuj+ I (4U,J 2(ujq1j + Uit + Ujjr1 + uij—1)
1 1
t Uit1j+1 + Ui-1j+1 + Uil -1+ Uifl,j71> n + R
x My

For the local truncation error of the Poisson equation we get

h3
—ng(X,y) - f(Xay) = - 72 (8§U(X,y) + a)z(aﬁu(xay))
h2
15 (0200u(x,y) + 0yu(x,y)) + O((h + h)?),

which does not look like an improvement w.r.t. the 5-pt stencil.
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The 2D case: improving accuracy (cont.)

BUT

h
—VSU(X,y) - f(Xay) = E (aiu(xay) + a)%a}%u(xvy))

h2
— L (B02u(x, v) + Ofulx, ) + O((R2 + I2)%)
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The 2D case: improving accuracy (cont.)

BUT

2

—VSU(X,y) - f(Xv}/) == TZ (aju(xay) + a)%a}%u(xv)/))

h2
— L (B02u(x, v) + Ofulx, ) + O((R2 + I2)%)

2
= T (@R(Bulx.y) + Bu(x. )
h2
~Z (BR(@Bulxy) + Bulxy)) + -

Talk at PSI, October 22, 2019 19/29
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The 2D case: improving accuracy (cont.)

BUT

h2
—VSU(X,y) - f(Xv}/) == TZ (aju(xay) + a)%a}%u(xv)/))

2
- (3§0§U(X,y) +0u(x,y)) + O((K + h3)?)
h2
12 (
2

3 (GR(0Ru(x.y) + ORu(x. 1) +

02(03u(x, y) + Byu(x, y)))

2

_ hX 2y 72 h 2y 72
__ﬁ aXv U(X7 ) 12 a_yv ( )+'.‘
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The 2D case: improving accuracy (cont.)

BUT

2

—VSU(X,y) - f(Xv}/) == TZ (aju(xay) + a)%a}%u(xv)/))

h2
— L (B02u(x, v) + Ofulx, ) + O((R2 + I2)%)

= _% (03(DZu(x,y) + u(x,)))

2

h
—15 (O (@RuCx.y) + Julx,y)) + -+
hy a2 M geve
=15 AVulx,y) = 35 VUl y) + -
h2 9 h)2, 2 2 2y2
=15 Kfly)+ 35 0y (x,y) + O((hs + hy)7)
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The 2D case: improving accuracy (cont.)

If the second derivatives of f not available or too expensive to
compute, replace them by finite differences:

|~

|~
|~
S
|~

TR T ORZ RZ T RZ ThRZ T ORZ 1
®
h: h h2 h2 h h 1 8 1
Yy x z v Y T f—
5 X » Qu(r,y) = — X o » e © f(z,y)
12 12
“AkA &ts -ala
RZ T B2 rZ T 2 RZ [ 32 “1

A fourth order local truncation error is the best one can get in 2D
by compact FD (Settle et al. SINUM 2013).
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The 2D case: linear system for compact FD

The matrix form of the stencil before is

1 1 1 1 1

(et e ot T o3 (g ) Two ™ )
1

= <I - ﬁ(l”y ® To, + Tp, ® I,,X)) f

Using the spectral decompositions of the matrices T, , T, gives

B2 + b2 -
u = (Qny ® an) (Iny & Anx + Any & Inx - X12 yAny ® Anx) X

1
x Wi, (I = 15, @ A+ Ap, ® I,,X)> (Qr, ® Q)Ff

In the middle there is again a diagonal matrix.
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The 2D case: Matlab demo

generate_convergence_plot2D
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The 3D case: problem statement

e Cuboid Q = (0, ax) x (0,a,) x (0, a,)
e Poisson equation

—V2u(x,y,z) = f(x,y,z) inQ, u=0o0n00. (13)

e Rectangular mesh: n,+2 x n,+2 x n,+2 grid points

e Mesh widths: h,, h,, h,

e 7-point stencil is standard approximation of the Laplacian
e Approximation ujj ~ u(x;, y;)

e In interior nyn,n, grid points approximate Poisson eq. by

—Ujj—1k + 2Ujjk — Ujj1.k
2
hy

—Uj_1jk + 2Ujjk — Ujy1jk

2 +

—Ujj k=1 + 2Ujjk — Ujj k1
+ - f(Xi7 .yj7 Zk)
h2
z
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The 3D case: linear system for the 7-point stencil

Collect values ujj, f(xi,yj, zk) in vectors u, f € R™™" similarly
as in the 2D case. Then, the matrix form of above equations is

lnz ® Th, @ In, +

1
(h?'”2®’”y® Ttz

1
2 T,,Z®I,,y®l,,x> u=f.

z

Using the spectral decomposition of the T's this becomes
(Qn, ® Qn, ® Qn,)

1 1
<h2 I, @I, @ Ap, + S 1n, @ Ap, @ I, + Anz ®l, ® Inx)

h h2
(Q,Z@QHC@QJ;)u:f.

The diagonal matrix in the middle can be precomputed.
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The 3D case: linear system for 4th order 19-point stencil

O u(x,y,2)

1
.

—_

O flx,y,2)

he

Cf. Spotz&Carey
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The 3D case: linear system for 4th order 19-point stencil
(cont.)

The matrix form of this stencil is

1
<h2lnz®lny®Tnx+h2Inz®Tny®lnx+hz

z

Tnz®lny®lnx
1 1 1 1 1 1
_12<h2 hZ)'”Z®T”y®T”X_12<+ )T"Z®’”Y®T

n "R
1 /1 1
~u(fr ) e Tmen).

1
= <I E(Inz ® In ® Tnx + Inz & Tny & InX + Tnz ® In_y ® I"x)) f

Remark: Spotz&Carey also give a O(h®) 27-pt stencil for the Laplacian
that does not lead to a compact stencil for the Poisson equation, though.
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The 3D case: numerical example

ax=11, a, =10, a,=0.9,

1 9 25\ .  mx 3y Y94
_ .2
f(x,y,z)=m <a)2<+a2 + Z)sm(ax)sm( a )sin( ” ).

u(x,y,z) = sin(nx/ax)sin(3wy/ay,)sin(57z/a,).

in the Matlab code the approximation error is plotted versus the
mesh width h ~ 1/n. The norm of the error is computed as

ny Ny ng

||e|| = nen nZZZZ‘”’J" U(X,,yJ,Zk)|

i=1 j=1 k=1

In this example we have n = n, = n, = n,.
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The 3D case: Matlab demo

generate_convergence_plot3D
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Conclusions

e High-order methods can generate accurate solutions on coarse
grids
e Solutions have to be smooth enough

e Matrices get denser as order increases, but we use its spectral
decomposition and FFT

e Class of operators is limited, but Laplacian is fine

e In 3D 6th order is possible but the stencil for the right-hand
side is not compact anymore

e To use compact FD inside other software, the (input) data
has to be accurate
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