

Alena Weber

ASIC and Detector Laboratory, Karlsruhe Institute of Technology and University Heidelberg

Karlsruher Institut für Technologie

4

Stabilisation Gate Kapazität = 7.75 fF/um2

hier 100 Transistoren mit w = 10 um und I = 10 um

 \rightarrow C =

1. Regulation Loop

Out von A1 ändert sich mit vdda.

Bei Bedarf wird das "zu viel" an Strom über Tn geleitet.

Ist vin zu hoch, leitet Tn mehr, ist vin "nah" an vdda sperrt Tn.

7

2. Regulation Loop

Out von A2 ändert sich mit vdda und steuert Tp an.

Wenn vdda zu hoch wird, schließt A2 Tp, vdda sinkt bis zum gewünschten Wert und Tp leitet wieder.

Test schematics similar to the one Michael Karagounis has shown

HTÄT IERG 5 Karlsruher Institut für Technologi

Test schematics for simulations

Test schematics for simulations

Layout Dimensions

Layout of the control block

296 um

Layout Dimensions

Tune Logic: 3 input bits to control 7 tune steps with identical resistors

Layout Dimensions

Big Transistors and stabilisation capacitor

256 um

BACKUP

Serial Powering

Parallel Powering

Serial Powering

- chip connection parallel, all outputs on same voltage level
- chip connection serial, all outputs on a different voltage level

Serial Powering

Overview of simulated circuits

Description of the circuit	Modification A	Modification B
FE-I 3 ATLAS hybrid pixel readout chip	Connection of transistor M1 changed	
LDO regulator with shunt (1)		
Regulator implemented on MuPix9		
Extended LDO regulator with shunt (2)	Modified circuit before A4, without A2	Like Modification A but with A2
Bandgap for reference voltage implemented on MuPix9		
Differential Amplifier implemented on MuPix9	Modified dimensions	

(1) Michael Karagounis et al., "An Integrated Shunt-LDO Regulator for Serial Powered Systems", Proceedings of ESSCIRC, 2009

Overview of simulated circuits

Description of the circuit	Modification A	Modification B
FE-I 3 ATLAS hybrid pixel readout chip	Connection of transistor M1 will b changed	e implemented on ATLASPix3
LDO regulator with shunt (1)		
Regulator implemented on MuPix9		
Extended LDO regulator with shunt (2)	Modified circuit before A4, without A2	Like Modification A but with A2
Bandgap for reference voltage implemented on MuPix9		
Differential Amplifier implemented on MuPix9	Modified dimensions	

(1) Michael Karagounis et al., "An Integrated Shunt-LDO Regulator for Serial Powered Systems", Proceedings of ESSCIRC, 2009

FE-I 3 ATLAS hybrid pixel readout chip

- VDDA = ~ 2.2 V
- VDDD = 1.8 V
- to protect M1 from to high voltages connected to VDDD

■ lin = 520 mA und lout sweep 0...500mA

DC Analyse

■ Iin sweep 20...500mA und Iout = 10mA

Transient Analyse

■ lin = 600 mA and lout = Ipulse 490 mA -> 500

- Top schematic
- The circuit is split in 3 parts:
 - Control block
 - two times the same block with the big power transistors

Schematic of the control block

Layout of the control block

296 um

Tune Logic: 3 input bits to control 7 tune steps with identical resistors

Regulator implemented on MuPix9

LDO regulator with shunt (1)

(1) Michael Karagounis et al., "An Integrated Shunt-LDO Regulator for Serial Powered Systems", Proceedings of ESSCIRC, 2009 (2) Michael Karagounia "Serial Powering with the Shunt LDO Regulator", ATLAS Lingrade Week, 16,04,2018

LDO regulator with shunt (1)

(1) Michael Karagounis et al., "An Integrated Shunt-LDO Regulator for Serial Powered Systems", Proceedings of ESSCIRC, 2009

(1) Michael Karagounis et al., "An Integrated Shunt-LDO Regulator for Serial Powered Systems", Proceedings of ESSCIRC, 2009

Modified circuit before A4, without A2

- (1) Michael Karagounis et al., "An Integrated Shunt-LDO Regulator for Serial Powered Systems", Proceedings of ESSCIRC, 2009
- (2) Michael Karagounis, "Serial Powering with the Shunt-LDO Regulator", ATLAS Upgrade Week, 16.04.2018

Modified circuit before A4, without A2

- (1) Michael Karagounis et al., "An Integrated Shunt-LDO Regulator for Serial Powered Systems", Proceedings of ESSCIRC, 2009
- (2) Michael Karagounis, "Serial Powering with the Shunt-LDO Regulator", ATLAS Upgrade Week, 16.04.2018

(1) Michael Karagounis et al., "An Integrated Shunt-LDO Regulator for Serial Powered Systems", Proceedings of ESSCIRC, 2009

Bandgap for reference voltage implemented on ATLAS Pix3

ITÄT ERG Karlsruher Institut für Technologie

Differential Amplifier implemented on ATLAS Pix3

Measurements with Power Regulator on MuPix9

RT Block

Big Transistors

Modified circuit before A4, with A2

(1) Michael Karagounis et al., "An Integrated Shunt-LDO Regulator for Serial Powered Systems", Proceedings of ESSCIRC, 2009

Overview of the MuPix9

- Small sensor prototype (4700 um x 3600 um)
- AMS aH18 HV-CMOS
 - Minimal gate length of 180nm
 - Substrate with 20 Ωcm
 - 48 columns each with 20 pixels
- Main parts:
 - Pixel matrix
 - Pixel readout electronics
 - Digital part with slow control
 - Slow control as stand-alone part
 - Two power regulators

Overview of the MuPix9

- Changes in comparison to MuPix8
 - one pixel matrix
 - Pixels in NMOS instead of PMOS
 - Readout cells are modified: now with capacitor for capacitive coupling for serial powering. Three
 modes concept from MuPix8 is kept.

- Digital part with modified state machine and new slow control
- slow control as stand-alone part

Regulator Element

- Same element with very small modifications for every solution
- Very small temperature dependency
- 8 tune bits
- Actual design as simple as possible, without linear regulator and as less space consuming as possible

Regulator Element

- Same element with very small modifications for every solution
- Very small temperature dependency
- 8 tune bits
- Actual design as simple as possible, without linear regulator and very compact
- Functional concept is shown here:
 - bandgap regulator works like a battery, which supply a fixed current
 - in real circuit only one bandgap, current is mirrored
 - two differential amplifiers

Serial powering – Introduction to standard concepts **Parallel Powering Serial Powering**

- Chip
- chip connection parallel, all outputs on same voltage level

Alena Weber

 chip connection serial, all outputs on a different voltage level

Parallel Powering Serial Powering

- Analog and digital powering separated in two circuits
- All digital levels are the same

- chip connection serial, all outputs on a different voltage level
- Solution: conductive coupling

Serial powering – Introduction to HVCMOS concepts

Alena Weber

Chip interconnection concepts for serial powering Concept 1: vdda and vssa separated

- Analog and digital voltage separated for lower noise
- Analog part with vdda (1.8 V) and vssa (0.9 V)
- Regulator element represented with two circles

Chip interconnection concepts for serial powering Concept 2: vdda = vssa

- Similar to concept 2, but:
- vssa = vdda = 1.8 V
- Redesign of pixel amplifier necessary

Karlsruher Institut für Technologie

Chip interconnection concepts for serial powering Concept 3: shared voltage

- Lower input current
- Less power consumption
- "Shared voltage"

Karlsruher Institut für Technologie

Chip interconnection concepts for serial powering **Concept 4: analog part serial, digital part parallel**

- Analog and digital voltage separated
- Analog part serial, digital part parallel
- For analog part all concepts that were presented can be used

Vision for next generation MuPix

- On a full-size MuPix: three submatrices similar to MuPix8, but every submatrix identical
 - submatrices powered in serial
 - digital and analog power disconnected and captive coupled
 - chips powered in parallel
 - leads to a current reduction of 2/3

