Efficiency Study using DC-DC Converter Efficiency measured at PSI October 2019

Luigi Vigani

testbeam contributors: Thomas Rudzki, Lukas Mandok, Dohun Kim, Andrew Groves & David M. Immig

First DC-DC Powering Tests at a Testbeam

- $1 \ k\Omega \ cm$ sensor from Batch 1 (pre-production) tested as indicator
- powering of supply voltages only from one sensor side! (only one-sided bonded)
- Sensor Configuration tested by Thomas and David at PSI beforehand
- $\rightarrow\,$ only DAC values for link stability optimized!
- testbeam data analyzed by Luigi Vigani

The Measurement Setup

Performed Scans

Board Type	VDDA	VDD	VSSA ¹	Shorted
Normal			981mV	no
External power	Hameg	Hameg	981mV	no
External power	Hameg	Hameg	1050mV	no
External power	Hameg	Hameg	1050mV	no
External power	Hameg	Hameg	1150mV	no
External power	DC-DC	DC-DC	980mV	VDD&VDDA
External power	DC-DC	DC-DC	1050mV	VDD&VDDA
External power	DC-DC	DC-DC	1150mV	VDD&VDDA
External power	Hameg	DC-DC	980mV	no
External power	DC-DC	Hameg	1150mV	no

¹supplied by Hameg and measured on insert

ROI Efficiency Maps for DC-DC @-40 V & 60 mV threshold

shorted DC-DC

VDDA DC-DC

external powered

DC-DC Testbeam Study

David M. Immig

Can be recovered by ...

Efficiency Map for VDDA&VDD shorted (DC-DC) @ higher VSSA

 $VSSA = 1050 \, mV$

$$VSSA = 1150 \, mV$$

David M. Immig

23.01.2019 5 / 7

Threshold Scans @-40 volt

Summary & Outlook

- first look into the effects of the DC-DC powering are promising
- $\rightarrow\,$ shorted VDDA and VDD do not decrease the efficiency
 - inefficiency by voltage drop over sensor can be recovered by higher VSSA voltages
- $ightarrow\,$ difference between VDDA & VSSA \sim 0.7 V
 - $\bullet\,$ however test to be redone with $200\,\Omega\,cm$
- $\rightarrow\,$ 2-side bonding allows modular supplement of power from both sides via jumpers

For upcoming December Testbeam at DESY:

- 200 Ω cm sensors (bonding in progress) to be tested in lab (observe the AmpOut)
- DC-DC powering for VDD, VDDA & VSSA
- 8 b/10 b errors observation at different power settings
- Ripple studies on the different powering configurations

BACKUP

Efficiency Map for VDDA&VDD shorted (DC-DC) @ 70 mV threshold

 sensor is unstable and reason is unknown!

other possible explanation:

 difference between VSSA and VDDA are too high & unstable which results in higher efficiency loss

ROI Efficiency Maps External Powering @-40 V & 50 mV threshold

Normal Board $VSSA = 981 \,\text{mV}$ $VSSA = 1050 \,\text{mV}$ $VSSA = 1150 \,\text{mV}$

DC-DC Testbeam Study

David M. Immig

