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Lecture Plan

Statistics basic concepts (Today)

    [Basic ingredients (PDFs, etc.)]

    Parameter estimation (maximum likelihood, least-squares, …)

    Model testing (χ2 tests, hypothesis testing, p-values, …)

Computing statistical results (Today/Tomorrow)

    Discovery

    Confidence intervals   

    Upper limits

    Systematics and profiling

    [Bayesian techniques]

The class will be based on both lectures and hands-on tutorial

https://indico.in2p3.fr/event/26179/timetable/?view=standard#13-hands-on-basic-statistitics


Hands-on sessions

The hands-on session will be based on Jupyter notebooks built using the 

numpy/scipy/pyplot stack.

If you have a computer with you, please install anaconda before the start of 

the class. This provides a consistent installation of python, JupyterLab, etc.

→ Alternatively, you can also install JupyterLab as a standalone package.

→ Another solution is to run the notebooks on the public jupyter servers at mybinder.org. 

This will probably be slower but avoids a local install.

The warmup item includes material that will not be covered in detail in the 

class, as well as an introduction to the notebooks. Please have a look before 

the beginning of the classes if you are unfamiliar with this. 

Warmup notebook  [solutions] binder  [solutions]

Lecture 1 Lecture Notes notebook binder

Lecture 2 Lecture notes notebook binder

https://docs.anaconda.com/anaconda/install/
https://jupyter.org/install
http://mybinder.org/
https://github.com/fastprof-hep/stats-tutorial/blob/main/Zuoz2022/notebook0.ipynb
https://github.com/fastprof-hep/stats-tutorial/blob/main/Zuoz2022/notebook0_solutions.ipynb
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=Zuoz2022/notebook0.ipynb
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=Zuoz2022/notebook0_solutions.ipynb
https://cernbox.cern.ch/index.php/s/4uMBNWb69xkh1Us
https://github.com/fastprof-hep/stats-tutorial/blob/main/Zuoz2022/notebook1.ipynb
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=Zuoz2022/notebook1.ipynb
https://cernbox.cern.ch/index.php/s/R6SSmY8aoXP8jdR
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=Zuoz2022/notebook2.ipynb
http://mybinder.org/v2/gh/fastprof-hep/stats-tutorial/main?filepath=Zuoz2022/notebook2.ipynb


Statistics are everywhere

Credits: StatLabCredits: mattbuck / wikimedia

“There are three types of lies - lies, damn 

lies, and statistics.” – Benjamin Disraeli 

“If your experiment needs statistics, you ought to have 
done a better experiment” – E. Rutherford

And Physics ?
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85

https://data.library.virginia.edu/statlab/
http://commons.wikimedia.org/wiki/User:Mattbuck


Introduction

Statistical methods play a critical role in 

many areas of physics

Higgs discovery :  “We have 5σ” !

“5s”

Phys. Lett. B 716 (2012) 1-29
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http://www.sciencedirect.com/science/article/pii/S037026931200857X


Introduction

JHEP 09 (2016) 1

Sometimes difficult to distinguish a bona fide discovery from a  background fluctuation…

New Physics ?

3.9σ ? 2.1σ ?
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http://link.springer.com/article/10.1007/JHEP09%282016%29001


Introduction

JHEP 09 (2016) 1

Sometimes difficult to distinguish a bona fide discovery from a  background fluctuation…

New Physics ?

3.9σ ? 2.1σ ?

A few months later...
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http://link.springer.com/article/10.1007/JHEP09%282016%29001


Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes
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Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes

More details in Anna 
Sfyrla’s lectures!
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Randomness in High-Energy Physics

Randomness involved in all stages

→ Classical randomness: detector reponse

→ Quantum effects in particle production, decay

Decays

Hard scattering

PDFs, Parton shower, Pileup

Detector response

Reconstruction

Image Credits: 
S. Höche, 
SLAC-PUB-16160

Experimental data is produced by incredibly complex processes

More details in Anna 
Sfyrla’s lectures!
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https://arxiv.org/abs/1411.4085


Measurement Errors: Energy measurement

Example: measuring the energy 
of a photon in a calorimeter

g

Calorimeter Readout
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Measurement Errors: Energy measurement

Example: measuring the energy 
of a photon in a calorimeter

Calorimeter Readout

g

Measure leakage into neighboring cells

Measure leakage behind calorimeter

Real 

life

Perfect

case

Cannot predict the measured value for a given event

 Random process ⇒  Need a ⇒ probabilistic description
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Quantum Randomness: H®ZZ*®4l
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Rare process: Expect 1 signal 

event every ~6 days

Phys. Rev. D 91, 012006
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Rare process: Expect 1 signal 

event every ~6 days

Phys. Rev. D 91, 012006

View online 
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https://cds.cern.ch/record/2230893/files/Higgs4l.gif?download=1



Quantum Randomness: H®ZZ*®4l
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“Will I get an event today ?” → only probabilistic answer

Rare process: Expect 1 signal 

event every ~6 days

Phys. Rev. D 91, 012006
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Statistical Modeling 
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Probability Distributions

Probabilistic treatment of possible outcomes 

Þ Probability Distribution

Example: two-coin toss

→ Fractions of events in each bin i 
converge to a limit p

i

Probability distribution : 

{ P
i
 } for i = 0, 1, 2

Properties

• P
i
 > 0

• Σ P
i
=1
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Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities p
i
, i=1.. n

bins

y

Contours: P(x,y)

x

Bin size → 0 : Probability distribution function P(x)

High PDF value 

⇒ High chance to get a measurement here

x

P(x) > 0,   ∫ P(x) dx = 1

Generalizes to multiple variables :

P(x,y) > 0, ∫ P(x,y) dx dy = 1
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Random Variables

X, Y... are Random Variables (continuous or discrete), a.ka. observables : 
→ X can take any value x, with probability P(X=x).

→ P(X=x) is the PDF of X, a.k.a. the Statistical Model.

→ The Observed data is one value x
obs

 of X,

     drawn from P(X=x).

y

x x

x

18 
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PDF Properties: Mean

E(X) = <X> : Mean of X – expected outcome 
on average over many measurements

→ Property of the PDF

For measurements x
1
... x

n
, 

then can compute the Sample mean:

→ Property of the sample

→ approximates the PDF mean.

⟨ X ⟩ =∫ x P ( x) dx

⟨ X ⟩ =∑
i

x i P i
or

PDF Mean Sample Mean

PDF Mean

x̄ =
1
n
∑
i

x i

19 
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PDF Properties: (Co)variance

Variance of X:

→ Average square of deviation from mean

→ RMS(X) = ÖVar(X) = σ
X
  standard deviation

Can be approximated by sample variance:

Covariance of X and Y: 

→ Large if variations of X and Y are “synchronized”

σ̂
2
=

1
n−1∑i

(x i− x̄)2

RMS

Correlation coefficient ρ =
Cov (X ,Y )

√ Var(X )Var(Y )

Var(X )=⟨ (X − ⟨ X ⟩ )
2
⟩

Cov (X ,Y )=⟨ (X − ⟨ X ⟩ ) (Y − ⟨Y ⟩ ) ⟩

Cov(x, y) > 0

y

x

-1 ≤ ρ ≤ 1
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Cov (X ,Y )=⟨ (X − ⟨ X ⟩ ) (Y − ⟨Y ⟩ ) ⟩

Cov(x, y) < 0

y

x

Cov(X, Y) = 0

-1 ≤ ρ ≤ 1
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“Linear” vs. “non-linear” correlations

Source: Wikipedia

For non-Gaussian cases, the Correlation coefficient ρ is not the whole story:

In particular, variables can still be correlated even

when ρ=0 : “Non-linear” correlations.

ρ

ρ

ρ

tan 2α =
2ρσ 1σ 2

σ 1
2
−σ2

2

21 
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https://en.wikipedia.org/wiki/Correlation_and_dependence


Gaussian PDF

Gaussian distribution:

→ Mean : X
0

→ Variance : σ2 (⇒ RMS = σ)

Generalize to N dimensions:

→ Mean : X
0

→ Covariance matrix :

G (x ; X0 ,σ )=
1

σ √2π
e
−
(x−X0)

2

2σ2

x0

s

G (x ; X0 ,C )=
1

[(2π)N|C|]1/2 e
−

1
2
(x−X 0)

TC−1
( x−X0)

C = [
Var (X 1) Cov (X1 , X2)

Cov (X2 , X1) Var (X2) ]
x1

x2

= [ σ 1
2

ρσ 1σ2

ρσ 1σ 2 σ 2
2 ]

tan 2α =
2ρσ 1σ 2

σ 1
2
−σ 2

2

α

22 
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Gaussian Quantiles Z P(|x – x
0
| > Zσ)

1 0.317

2 0.045

3 0.003

4 3 x 10-5

5 6 x 10-7

Consider

G(x;x
0
,σ) depends only on z ~ G(z; 0,1)

Probability P(|x – x
0
| > Zσ) to be away from the mean:

Gaussian Cumulative Distribution Function (CDF) :

z = (
x−x0

σ ) “pull” of x

Φ( z) =∫
−∞

z
G(u ;0,1) du
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For an observable X with any(*) distribution, one has

What this means:

• The average of many measurements is always Gaussian, whatever the 
distribution for a single measurement

• The mean of the Gaussian is the average of the single measurements

• The RMS of the Gaussian decreases as Ön : smaller fluctuations when 
averaging over many measurements

Another version:

Mean scales like n, but RMS only like Ön

Central Limit Theorem

x̄ =
1
n∑i=1

n

xi ∼
n→∞

G ( ⟨ X ⟩ ,
σ X

√n
)

∑
i=1

n

xi ∼
n→∞

G ( n ⟨X ⟩ , √n σ X)

(*) Assuming σX < ∞ 
and other regularity 
conditions 

24 
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Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay cos θ*)

Distribution becomes Gaussian, although very non-Gaussian originally

Distribution becomes narrower as expected (as 1/√n )

x̄ =
1
n∑i=1

n

xi

x̄
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Multiple Independent Gaussian

variables  x
i
: Define

Measures global distance from 

reference point (x
1

0 …. x
n

0)

Distribution depends on n :

Rule of thumb:

Chi-squared σ1

σ2

χ
2=4

χ2=
1

χ
2
=∑

i=1

n

( xi − xi
0

σ i )
2

χ2

χ2
/n  should be ≾ 1 26 
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Multiple Independent Gaussian

variables  x
i
: Define

Measures global distance from 

reference point (x
1

0 …. x
n

0)

Distribution depends on n :

Rule of thumb:

Chi-squared σ1

σ2

χ
2=4

χ2=
1

χ
2
=∑

i=1

n

( xi − xi
0

σ i )
2

χ2

χ2
/n  should be ≾ 1

χ2/n
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Histogram Chi-squared

Histogram χ2 with respect to a reference shape:

• Assume an independent Gaussian distribution in each bin

• Degrees of freedom = (number of bins) – (number of fit parameters)

BLUE histogram vs. flat reference

χ2 = 12.9,   p(χ2=12.9, n=10) = 23%
✔
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Histogram Chi-squared

Histogram χ2 with respect to a reference shape:

• Assume an independent Gaussian distribution in each bin

• Degrees of freedom = (number of bins) – (number of fit parameters)

BLUE histogram vs. flat reference

χ2 = 12.9,   p(χ2=12.9, n=10) = 23%

RED histogram vs. flat reference

χ2 = 38.8,  p(χ2=38.8, n=10) = 0.003% ✘

✔

RED histogram vs. correct reference

χ2 = 9.5,  p(χ2=9.5, n=10) = 49% ✔
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Error Bars

Strictly speaking, the uncertainty is given by the model :

→ Bin central value ~ mean of the bin PDF

→ Bin uncertainty ~ RMS of the bin PDF

 The data is just what it is, a simple observed point.

 ⇒ One should in principle show the error bar on the prediction.

→ In practice, the usual convention is to have error bars on the data points.
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Statistical Modeling 
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Example 1: Z counting

Measure the cross-section (event rate) of the 
Z→ ee process

σ
fid
=

ndata−N bkg

C fid L

35000 ± 187

Phys. Lett. B 759 (2016) 601

175 ± 8

0.552 ± 0.006

(81 ± 2) pb-1

σfid = 0.781  ± 0.004 (stat)  ± 0.018 (syst) nb

“Single bin counting” : only data input is n
data

.

Fluctuations in 

the data counts

Other uncertainties 

(assumptions, parameter values)

30 
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http://dx.doi.org/10.1016/j.physletb.2016.06.023


Example 2: ttH→bb 

Event counting in different regions: 

Multiple-bin counting

Lots of information available

→ Potentially higher sensitivity

→ How to make optimal use of it ?

arXiv:2111.06712

31 
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https://arxiv.org/abs/2111.06712


Example 3: unbinned modeling ATLAS-CONF-2017-045

All modeling done using continuous distributions:

P total(mγ γ ) =
S

S+B
P signal(mγ γ ;mH) +

B
S+B

Pbkg(mγ γ) 32 
/ 
85

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/


How to count

Common situation: produce many events N, select a (very) small fraction P

→ In principle, binomial process

→ In practice, P  1, N  1≪ ≫ ,  Poisson approximation.⇒
→ i.e. very rare process, but very many trials so still expect to see good events

Poisson distribution P (n ;λ)=e−λ λ
n

n!
(1−P)N−n

∼
n≪N

( 1−
λ
N )

N

∼
N≫1

e−λ

Mean = λ

Variance = λ

σ = √λ

Central limit theorem :

becomes Gaussian for large λ : 

P (λ) →
λ → ∞

G(λ , √λ )

For a counting 

measurement,

RMS = √Mean
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→ In principle, binomial process

→ In practice, P  1, N  1≪ ≫ ,  Poisson approximation.⇒
→ i.e. very rare process, but very many trials so still expect to see good events

Poisson distribution P (n ;λ)=e−λ λ
n

n!
(1−P)N−n

∼
n≪N

( 1−
λ
N )

N

∼
N≫1

e−λ

Mean = λ

Variance = λ

σ = √λ

Central limit theorem :

becomes Gaussian for large λ : 

P (λ) →
λ → ∞

G(λ , √λ )

For a counting 

measurement,

RMS = √Mean
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Statistical Model for Counting

Observable: number of events n

Typically both Signal and Background present:

Model has parameters S and B.

B can be known a priori or not (S usually not...)

→ Example: assume B is known, use measured n to find out about S.

P (n ;S , B)=e−(S + B) (S + B) n

n!
S : # of events from signal process

B : # of events from bkg. process(es)
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Multiple counting bins

Count in bins of a variable  ⇒ histogram n
1 
... n

N
. 

(N : number of bins)

 

Shapes f typically obtained from simulated events (Monte Carlo)

→ HEP: typically excellent modeling from simulation, although some uncertainties 

need to be accounted for.

However not always possible to generate sufficiently large MC samples

MC stat fluctuations can create artefacts, especially for S  B.≪

P ({ni } ;S , B) =∏
i=1

N

e−(Sf S , i+Bf B , i)
(S f S , i+B f B , i)

ni

ni !

Per-bin fractions (=shapes)

of Signal and Background

Poisson distribution in each bin
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Model typically includes:

• Parameters of interest (POIs) : what we want to measure

→ S, m
W

, …

• Nuisance parameters (NPs) : other parameters needed to define the model

→ Background levels (B)

→ For binned data, fsig
i
 , fbkg

i

NPs must be either:

→ Known a priori (within uncertainties) or

→ Constrained by the data

Model Parameters
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Takeaways

Description Observable Likelihood

Counting
n Poisson

Binned shape 
analysis

n
i
, i = 1 .. N

bins
Poisson product

Unbinned 
shape analysis

m
i
, i = 1 .. n

evts
Extended Unbinned Likelihood

P(ni ;S ,B)=∏
i=1

nbins

e−(S f i
sig
+ B f i

bkg
) (S f i

sig
+ B f i

bkg
)
n i

ni !

P(n;S ,B)=e−(S + B) (S + B)
n

n!

P(mi ;S ,B)=
e−(S + B)

nevts!
∏
i=1

nevts

S Psig(mi)+B Pbkg(mi)

Random data must be described using a statistical model:

Model can include multiple categories, each with a separate description

Includes parameters of interest (POIs) but also nuisance parameters (NPs)

Next step: use the model to obtain information on the POIs
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Hypothesis Testing 
and discovery
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Discovery Testing

We see an unexpected feature in our data, is it 

a signal for new physics or a fluctuation ?

e.g. Higgs discovery :  “We have 5σ” !

“5s”

Phys. Lett. B 716 (2012) 1-29 39 
/ 
85

http://www.sciencedirect.com/science/article/pii/S037026931200857X


Say we have a Gaussian measurement with

a background B=100, and we measure n=120

Did we just discover something ? Maybe :-) (but not very likely)

The measured signal is S = 20. 

Uncertainty on B is √B = 10

 ⇒ Significance Z = 2

 ⇒ we are ~2σ away from S=0.

Gaussian quantiles : 

Z = 2 happens p
0 
~ 2.3% of the time if S=0

P-value: 

 ⇒ Rare, but not exceptional

Discovery Testing

B=100

√B=10

n

B=100

Obs: 120n

Obs: 120

Z =
S

√B

p0 = 1−Φ(Z)
Φ(Z) =∫

−∞

Z
G (u ;0,1) du

S = nobs – B 
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Discovery Testing

n
obs S Z p

0

105 5 0.5σ 31%

110 10 1σ 16%

120 20 2σ 2.3%

130 30 3σ 0.1%

150 50 5σ 3 10-7

B=100

 √B=10

n

Evidence

Discovery

105
110

130 150

B=100

n
105
110

130

150

● Determine S

● Compute Z and p
0
 

120120

Straightforward in this Gaussian case

Need to be able to do the same in 

more complex cases:
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Maximum Likelihood Estimation
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What a PDF is for

Generate 

P (λ=5) 2, 5, 3, 7, 4, 9, ….
Each entry = separate “experiment”

Unbinned

Model describes the distribution of the observable: P(data; parameters)

⇒ Possible outcomes of the experiment, for given parameter values

Can draw random events according to PDF : generate pseudo-data
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What a PDF is also for: Likelihood

Estimate

P (λ=?) 2

Likelihood:  L(parameters) = P(data; parameters)

?

→ same as the PDF, but seen as function of the parameters

Model describes the distribution of the observable: P(data; parameters)

 ⇒ Possible outcomes of the experiment, for given parameter values

We want the other direction: use data to get information on parameters
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Maximum Likelihood Estimation

To estimate a parameter μ, find the value μ̂ that maximizes L(μ)

Observed 
Value n=5

S = 20S = 5

S = 0.5 

n
s

L(S) max 
@ Ŝ = 5

given n=5

μ̂ = argmax L(μ)

n
L(

S; 
n=

5)

P(
n;

 S)

Maximum Likelihood 

Estimator (MLE) :μ̂

MLE: the value of μ for which this data was most likely to occur

The MLE is a function of the data – itself an observable

No guarantee it is the true value (data may be “unlikely”) but sensible estimate 45 
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Gaussian case

data

 Best-fit of Gaussian PDF mean to observed data
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Gaussian case

data

 Best-fit of Gaussian PDF mean to observed data
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Gaussian case

data

 Best-fit of Gaussian PDF mean to observed data
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Multiple Gaussian bins

-2 log Likelihood:

Maximum likelihood    Minimum χ⇔ 2

  ⇔ Least-squares

      minimization

λ (μ) =−2 log L(μ)=∑
i=1

N bins

 (
ni−μ i

σ i )
2

However typically need to perform non-linear minimization in other cases.

HEP practice:

● MINUIT (C++ library within ROOT, numerical gradient descent)

● scipy.minimize – using NumPy/TensorFlow/PyTorch/... backends

→ Many algorithms – gradient-based, etc.
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Hypothesis Testing

Null Hypothesis: assumption on POIs, say value of S (e.g. H
0
 : S=0)

→ Goal : decide if H
0
 is favored or disfavored using a test based on the data

  Possible 
 outcomes:

Data disfavors H
0
 

(Discovery claim)

Data favors H
0

(Nothing found)

H
0
 is false 

(New physics!)
 Discovery! 

 Missed
 discovery

H
0
 is true 

(Nothing new)

 False
 discovery

 No new physics, 
 None found

 "... the null hypothesis is never proved or established, but is possibly disproved, in the course 
of experimentation. Every experiment may be said to exist only to give the facts a chance of 
disproving the null hypothesis." – R. A. Fisher 48 
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Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H
0
 : S=0)

 
Data disfavors H

0
 

(Discovery claim)
Data favors H

0

(Nothing found)

H
0
 is false 

(New physics!)
Discovery! Type-II error

(Missed discovery)

H
0
 is true 

(Nothing new)
Type-I error 
(False discovery)

No new physics, 
none found

Lower Type-I errors ⇔ Higher Type-II errors and vice versa: cannot have everything!

S = 0

Type-I error
p-value

BSM

Type-II Error
→ Goal: test that minimizes Type-II 

errors for a given level of Type-I error.

Discriminant observable

p-value, significance
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ROC Curves

→ Goal: test that minimizes Type-II 

errors for given level of Type-I error.

→ Usually set predefined level of

acceptable Type-I error (e.g. “5σ”)

S = 0

Type-I error
p-value

BSM

Type-II Error

1- εType-II (= εS)

1-
 ε Ty

pe
-I (

=1
 - 

ε B)

1

1

Better

Be
tte

r

0

No discrimination

Increasingly
more powerful
discriminators

“Receiver operating characteristic” 

(ROC) Curve:

→ Shows Type-I vs Type-II rates for 

different selections

→ All curves monotonically 

decrease from (0,1) to (1,0)

→ Better discriminators more bent 

towards (1,1)

Discriminant observable
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Discovery Testing

n
obs S Z p

0

105 5 0.5σ 31%

110 10 1σ 16%

120 20 2σ 2.3%

130 30 3σ 0.1%

150 50 5σ 3 10-7

B=100

 √B=10

n

Evidence

Discovery

105
110

130 150

B=100

n
105
110

130

150

● Determine S

● Compute Z and p
0
 

120120

Straightforward in this Gaussian case

Need to be able to do the same in 

more complex cases:
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Testing for Evidence in Gaussian counting

Test threshold (3σ)

p-value (0.1%)
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Testing for Evidence in Gaussian counting

Test threshold (3σ)

p-value (0.1%)

Type-II error 

for S=40
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Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses H
0
 and H

1
, the 

optimal discriminator is the Likelihood ratio (LR) 

e.g. 

As for MLE, choose the hypothesis that is more likely given the data we have.

L(H1 ;data)

L(H0 ; data)

L(S= 5 ; data)

L(S= 0 ; data)

Caveat: Strictly true only for simple 
hypotheses (no free parameters)

→ Always need an alternate hypothesis to test against the null.

→ Minimizes Type-II uncertainties for given level of Type-I uncertainties

→ In the following: all tests based on LR, will focus on p-values (Type-I errors),

trusting that Type-II errors are anyway as small as they can be...
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Discovery: Test Statistic

Discovery :

• H
0
 : background only (S = 0) against

• H
1
: presence of a signal (S > 0)

→ For H
1
, any S > 0 is possible, which to use ? The one preferred by the data, Ŝ.

 ⇒ Use Likelihood ratio:

→ In fact use the test statistic

Note: for Ŝ < 0, set q
0
=0 to reject negative signals (“one-sided test statistic”)

S=0

H0
H1

Cowan, Cranmer, Gross & Vitells, 
Eur.Phys.J.C71:1554,2011

L(S=0)

L( Ŝ)

q0 = −2 log
L(S=0)

L( Ŝ)
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Discovery p-value

Large values of

 ⇒ observed Ŝ is far from 0

 ⇒ H
0
(S=0) disfavored compared to H

1
(S≠0).

 ⇒ Large Ŝ !

Compute p-value in the tail of the distribution

to exclude H
0 

(... and claim a discovery!)

Need to know f(q
0
 | S=0), the distribution of the test statistic...

−2 log
L(S=0)

L( Ŝ)

Ŝ ≤ 0

Observed 
value q

0
obs

data 

prefer

S = 0

data 

prefer

S > 0

f(q
0
|S=0) 

p0 =∫
q0

obs

∞

f (q0∣S=0) dq0

large Ŝ

q
0

if:
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Asymptotic distribution of q
0

 Gaussian regime for Ŝ (e.g. large n
evts

, Central-limit theorem) :

Wilk’s Theorem: q
0
 distributed as χ2 (n

par
) for S = 0

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √q0

L(S) = exp[− 1
2
( S− Ŝ

σ )
2

] ⇒ q 0 = ( Ŝσ )
2

⇒ √ q 0 =
Ŝ
σ ∼ G (0 ,1) ⇒ q 0 ∼ χ

2
(ndof=1 )

 ⇒ n
par

 = 1 :  √q
0
 is distributed as a Gaussian

 ⇒ Can compute p-values from Gaussian quantiles

 ⇒ Even more simply, the significance is:

Typically works well already for for event counts of O(5) and 

above   Widely applicable⇒

S ≤ 0

q
0

Observed 

value q
0

obs

χ2(n
dof

=1) 

large S

p-value

√q
0

(*) 1-line “proof” : asymptotically L and S are Gaussian, so

p0 = 1 − Φ(√ q0)
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Homework 1: Gaussian Counting

Count number of events n in data

→ Assume n large enough so process is Gaussian

→ Assume B is known, and we measure S

Likelihood :

→ Find the best-fit value (MLE) Ŝ for the signal

    (can use λ = -2 log L instead of L for simplicity)

→ Find the expression of q
0
 for Ŝ > 0.

→ Find the expression for the significance

L(S ;nobs) = e
−

1
2 (

nobs−(S+B)

√S+B )
2

S+B

√(S+B)
nobs

Z =
Ŝ

√B
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Homework 2: Poisson Counting

Same problem but now not assuming Gaussian behavior:

→ As before, compute Ŝ, and q
0

→ Compute Z = √q
0
, assuming asymptotic behavior

Solution:

Exact result can be obtained using

pseudo-experiments → close to √q
0
 result

L(S ;n) = e−(S+ B)
(S+B)n

Z= √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]

Asymptotic formulas justified by Gaussian

regime, but remain valid even for small 

values of S+B (down to 5 events!)
See G. Cowan’s slides for the 
case with B uncertainty

Eur.Phys.J.C71:1554,2011

(Can remove the n! constant since we’re only 

dealing with L ratios)
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Discovery Thresholds

Evidence : 3σ  p⇔
0
 = 0.3%   1 chance in 300⇔

Discovery:  5σ  p⇔
0
 = 3 10-7   1 chance in 3.5M⇔

Why so high thresholds ? (from Louis Lyons):

• Look-elsewhere effect: searches typically cover 

multiple independent regions  Higher chance⇒

to have a fluctuation “somewhere”

N
trials

 ~ 1000 : local 5σ   O(10⇔ -4) more reasonable

• Mismodeled systematics: factor 2 error in 

syst-dominated analysis  factor 2 error on Z…⇒

• History: 3σ and 4σ excesses do occur regularly, for the reasons above

Extraordinary claims require extraordinary evidence!
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Extra Slides
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Rare Processes ?

HEP : almost always use Poisson

distributions. Why ?

ATLAS : 

• Event rate ~ 1 GHz

(L~1034 cm-2s-1~10 nb-1/s, s
tot

~108 nb, )

• Trigger rate ~ 1 kHz

(Higgs rate ~ 0.1 Hz)

 ⇒ p ~ 10-6  1 ≪ (p
H→γγ

 ~ 10-13)

A day of data: N ~ 1014  1 ≫

Þ Poisson regime! Similarly true in many 

other physics situations.

W.J. Stirling, private 
communication

(Large N = design requirement, to get not-too-small l=Np...)
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Unbinned Shape Analysis

Observable: set of values m
1
... m

n
, one per event

→ Describe shape of the distribution of m

→ Deduce the probability to observe m
1
... m

n

H→γγ-inspired example:

• Gaussian signal 

• Exponential bkg

 ⇒ Total PDF for a single event:

 ⇒ Total PDF for a dataset

P signal(m) = G(m;mH ,σ)

P total (m) =
S

S+B
G (m;mH ,σ) +

B
S+B

α e−α m

P bkg(m) = α e−αm

slope a

mH

s

Signal

Background

Total

P ({mi }i=1…n) = e−(S+B) (S+B)n

n! ∏
i=1

n
S

S+B
G(mi ;mH ,σ) +

B
S+B

α e−αmi

Probability to observe
the value miProbability to observe n events

Expected yields : S, B
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Poisson Example

Assume Poisson distribution with B = 0 :
Say we observe n=5, want to infer information on the parameter S

→ Try different values of S for a fixed data value n=5

→ Varying parameter, fixed data: likelihood 

P (n ;S) = e−S S
n

n!

L(S ;n=5)=e−S S
5

5!

Observed 
Value n=5

n 63 
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Assume Poisson distribution with B = 0 :
Say we observe n=5, want to infer information on the parameter S
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Read L(S; n=5) here
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Poisson Example

Assume Poisson distribution with B = 0 :
Say we observe n=5, want to infer information on the parameter S

→ Try different values of S for a fixed data value n=5

→ Varying parameter, fixed data: likelihood 

P (n ;S) = e−S S
n

n!

L(S ;n=5)=e−S S
5

5!

Observed 
Value n=5

P(S = 20)
Low

likelihood

P(S = 5)
High

likelihood

P(S = 0.5)
Low

likelihood

n

Read L(S; n=5) here
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Poisson Example

Assume Poisson distribution with B = 0 :
Say we observe n=5, want to infer information on the parameter S

→ Try different values of S for a fixed data value n=5

→ Varying parameter, fixed data: likelihood 

P (n ;S) = e−S S
n

n!

L(S ;n=5)=e−S S
5

5!

Observed 
Value n=5

P(S = 5)
High

likelihood

P(S = 0.5)
Low

likelihood

n

L(S; n=5):
Likelihood 
of S for n=5

S

Read L(S; n=5) here
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MLEs in Shape Analyses

Binned shape analysis:

L(S ;ni) = P(ni ;S) =∏
i=1

N

Pois(ni ;S f i + Bi)

λPois(S) =−2 log L(S) =−2∑
i=1

N

log Pois(ni ;S f i + Bi)

λGaus(S) =∑
i=1

N

−2 logG (ni ;S f i + Bi ,σ i) =∑
i=1

N

( ni−(S f i + Bi)
σ i )

2

χ2 formula!

In both cases, MLE  ⇔ Best Fit

Maximize global L(S) (each bin may prefer a different S)
In practice easier to minimize 

In the Gaussian limit

→ Gaussian MLE (min χ2 or min λGaus) : Best fit value in a χ2 (Least-squares) fit
→ Poisson  MLE (min λPois) : Best fit value in a likelihood fit (in ROOT, fit option “L”)
In RooFit, λPois ⇒ RooAbsPdf::fitTo(), λGaus ⇒ RooAbsPdf::chi2FitTo().

Needs a computer...
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H→γγ

Estimate the MLE Ŝ of S ?

→ Perform (likelihood) best-fit of 
model to data
⇒ fit result for S is the desired Ŝ.

In particle physics, often use the 
MINUIT minimizer within ROOT. 

L(S ,B ;mi)=e
−(S + B) ∏

i=1

nevts

S Psig (mi)+B Pbkg(mi)

ATLAS-CONF-2017-045

Ŝ 
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MLE Properties

• Asymptotically Gaussian 
        and unbiased 

• Asymptotically Efficient : σμ̂ is the lowest possible value (in the limit n®¥) 
among consistent estimators.
→ MLE captures all the available information in the data

• Also consistent: μ̂ converges to the true value for large n,

• Log-likelihood : Can also minimize  l = -2 log L
→ Usually more efficient numerically 

→ For Gaussian L, l is parabolic: 
• Can drop multiplicative constants in L (additive constants in l)

P (μ̂ ) ∝ exp (−
(μ̂−μ

*
)

2

2σ μ̂

2 )     for n → ∞

for large enough datasets

μ̂ →
n→∞

μ
*

Standard deviation of the distribution of μ̂ 

⟨ μ̂ ⟩ = μ
*  for n → ∞
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Extra: Fisher Information

Fisher Information:

Measures the amount of information available in the measurement of μ.

Gaussian likelihood:

→ smaller σ
Gauss

  more information.⇒

Cramer-Rao bound:

For any estimator . μ̃

→ cannot be more precise than allowed by information in the measurement.

Efficient estimators reach the bound : e.g. MLE in the large dataset limit.

I (μ) = ⟨ ( ∂
∂μ

log L(μ) )
2

⟩ =− ⟨ ∂
2

∂μ
2 log L(μ) ⟩

I (μ ) =
1

σGauss
2

Var(~μ ) ≥
1

I (μ )

Gaussian case: 
● For a Gaussian estimator μ̃ 

● MLE: Var(μ̂) = σμ̂
2 

P (~μ) ∝ exp (−
(~μ−μ

*
)

2

2σ~μ

2 )

Cramer-Rao: Var(μ̃) ≥ σGauss
2 = σμ̃

2  
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Some Examples
High-mass X→γγ Search: JHEP 09 (2016) 1

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

p0 = 1.8 ´ 10-9  Û  Z = 5.9σ

3.9σ
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http://link.springer.com/article/10.1007/JHEP09%282016%29001
http://www.sciencedirect.com/science/article/pii/S037026931200857X


Upper Limit Pathologies

Upper limit:   Sup ~ Ŝ + 1.64 σS.

Problem: for negative Ŝ, get very good 
observed limit. 
→ For Ŝ sufficiently negative, even Sup < 0 ! 

How can this be ?
→ Background modeling issue ?… Or:
→ This is a 95% limit ⇒ 5% of the time, the 
limit wrongly excludes the true value,
e.g. S*=0.

Options
→ live with it: sometimes report limit < 0
→ Special procedure to avoid these cases,
since if we assume S must be >0, we know 
a priori this is just a fluctuation.

σS = 1
69 
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CL
s

Usual solution in HEP : CLs.
→ Compute modified p-value 

⇒ Rescale exclusion at S0 by exclusion at S=0.
→ Somewhat ad-hoc, but good properties…

Ŝ compatible with 0 : pB ~ O(1)
pCLs ~ pS0 ~ 5%, no change.

Far-negative Ŝ : 1 - pB ≪ 1
pCLs~ pS0/(1-pB) ≫ 5%
→ lower exclusion ⇒ higher limit, 
    usually >0 as desired

pCLs
=

pS0

(1 − pB)

A. Read, J.Phys. G28 (2002) 2693-2704

σS = 1

The usual p-value under 
H(S=S0) (=5%)

The p-value computed 
under H(S=0)

Drawback: overcoverage 
→ limit is claimed to be 95% CL, but actually >95% CL for small 1-pB. 70 

/ 
85

http://inspirehep.net/record/599622?ln=en


CL
s
 : Gaussian Bands

Usual Gaussian counting example with known B:
95% CLs upper limit on S:

Compute expected bands for S=0:
→ Asimov dataset ⇔ Ŝ = 0 : 
→ ± nσ bands:  

Sup,exp
0

= 1.96 σ S

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S

Sup,exp
±n

= (±n + [ 1 − Φ
−1

( 0.05 Φ(∓n) ) ] ) σ S

Ŝ 

n Sexp
±n

  /√B

+2 3.66
+1 2.72
  0 1.96
-1 1.41
-2 1.05

CLs : 
● Positive bands 

somewhat reduced,
● Negative ones more so

σS = √B
with

Band width from
depends on S, for
non-Gaussian cases,different
values for each band...

σ S , A
2

=
S2

qS(Asimov)

Eur.Phys.J.C71:1554,2011
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Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

• LEP: Simple LR with NPs from MC

– Compare μ=0 and μ=1

• Tevatron: PLR with profiled NPs

Both compare to μ=1 instead of best-fit μ̂ 

→ Asymptotically:

• LEP/Tevaton: q linear in μ Þ ~Gaussian

• LHC: q quadratic in μ Þ  ~χ2 

→ Still use TeVatron-style for discrete cases

H0
H1

m=1
H1

H0

qLEP=−2 log
L(μ=0,~θ)

L (μ=1,~θ)

qTevatron=−2 log
L(μ=0, ^̂θ0)

L(μ=1, ^̂θ1)

LEP/Tevatron
LHC

m=0

Andrey Korytov , EPS 20 11
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Probability Distributions

Probabilistic treatment of possible outcomes 

Þ Probability Distribution

Example: two-coin toss

→ Fractions of events in each bin i 
converge to a limit p

i

Probability distribution : 

{ P
i
 } for i = 0, 1, 2

Properties

• P
i
 > 0

• Σ P
i
=1
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Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities p
i
, i=1.. n

bins

Generalizes to multiple variables :

P(x,y) > 0, ò P(x,y) dx dy = 1 y

Contours: P(x,y)

x

Bin size ® 0 : 
Probability distribution function P(x)
→ High values Û high chance to get 
                              a measurement here

x

P(x) > 0, ò P(x) dx = 1
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Random Variables

X, Y... are Random Variables (continuous or discrete), a.ka. observables : 
→ X can take any value x, with probability P(X=x).

→ P(X) is the PDF of X, a.k.a. the Statistical Model.

→ The Observed data is one value x
obs

 of X,

     drawn from P(X).

y

x x

x
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PDF Properties: Mean

E(X) = <X> : Mean of X – expected outcome 
on average over many measurements

→ Property of the PDF

For measurements x
1
... x

n
, 

then can compute the Sample mean:

→ Property of the sample

→ approximates the PDF mean.

⟨ X ⟩ =∫ x P ( x) dx

⟨ X ⟩ =∑
i

x i P i
or

PDF Mean Sample Mean

PDF Mean

x̄ =
1
n
∑
i

x i
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PDF Properties: (Co)variance

Variance of X:

→ Average square of deviation from mean

→ RMS(X) = ÖVar(X) = σ
X
  standard deviation

Can be approximated by sample variance:

Covariance of X and Y: 

→ Large if variations of X and Y are “synchronized”

σ̂
2
=

1
n−1∑i

(x i− x̄)2

RMS

Correlation coefficient ρ =
Cov (X ,Y )

√ Var(X )Var(Y )

Var(X )=⟨ (X − ⟨ X ⟩ )
2
⟩

Cov (X ,Y )=⟨ (X − ⟨ X ⟩ ) (Y − ⟨Y ⟩ ) ⟩

Cov(x, y) > 
0

y

x

-1 ≤ ρ ≤ 1
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“Linear” vs. “non-linear” correlations

Source: Wikipedia

For non-Gaussian cases, the Correlation coefficient ρ is not the whole story:

In particular, variables can still be correlated even
when ρ=0 : “Non-linear” correlations.

ρ

ρ

ρ

tan 2α =
2ρσ 1σ 2

σ 1
2
−σ2

2
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https://en.wikipedia.org/wiki/Correlation_and_dependence


Gaussian PDF

Gaussian distribution:

→ Mean : X
0

→ Variance : σ2 (⇒ RMS = σ)

Generalize to N dimensions:

→ Mean : X
0

→ Covariance matrix :

G (x ; X0 ,σ )=
1

σ √2π
e
−
(x−X0)

2

2σ2

x0

s

G (x ; X0 ,C )=
1

[(2π)N|C|]1/2 e
−

1
2
(x−X 0)

TC−1
( x−X0)

C = [
Var (X 1) Cov (X1 , X2)

Cov (X2 , X1) Var (X2) ]
x1

x2

= [ σ 1
2

ρσ 1σ2

ρσ 1σ 2 σ 2
2 ]

tan 2α =
2ρσ 1σ 2

σ 1
2
−σ 2

2

α
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Gaussian Quantiles Z P(|x – x0| > Zσ)

1 0.317
2 0.045
3 0.003
4 3 x 10-5

5 6 x 10-7

Consider

G(x;x0,σ) depends only on z ~ G(z; 0,1)

Probability P(|x – x0| > Zσ) to be away
from the mean:

Gaussian Cumulative Distribution Function (CDF) :

z = (
x−x0

σ ) “pull” of x

Φ( z) =∫
−∞

z
G(u ;0,1) du
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Central Limit Theorem

For an observable X with any distribution, one has(*)

What this means:

• The average of many measurements is always Gaussian, whatever the distribution for a 
single measurement

• The mean of the Gaussian is the average of the single measurements

• The RMS of the Gaussian decreases as Ön : smaller fluctuations when averaging over many 
measurements

Another version:

Mean scales like n, but RMS only like Ön

x̄ =
1
n∑i=1

n

xi ∼
n→∞

G ( ⟨ X ⟩ ,
σ X

√n
)

∑
i=1

n

xi ∼
n→∞

G ( n ⟨X ⟩ , √n σ X)

(*) Assuming σX < ∞ 
and other regularity 
conditions 
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Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay cos θ*)

Distribution becomes Gaussian, although very non-Gaussian originally
Distribution becomes narrower as expected (as 1/Ön )

x̄ =
1
n∑i=1

n

xi

x̄
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Multiple Independent Gaussian
variables  xi: Define

Measures global distance from 
reference point (x1

0 …. xn
0)

Distribution depends on n :

Rule of thumb:

Chi-squared σ1

σ2

χ
2=4

χ2=
1

χ
2
=∑

i=1

n

( xi − xi
0

σ i )
2

χ2

χ2
/n  should be ≾ 1
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Measures global distance from 
reference point (x1

0 …. xn
0)

Distribution depends on n :

Rule of thumb:

Chi-squared σ1

σ2

χ
2=4

χ2=
1

χ
2
=∑

i=1

n

( xi − xi
0

σ i )
2

χ2

χ2
/n  should be ≾ 1

χ2/n
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Histogram Chi-squared

Histogram χ2 with respect to a reference shape:

• Assume an independent Gaussian distribution in each bin

• Degrees of freedom = (number of bins) – (number of fit parameters)

BLUE histogram vs. flat reference
χ2 = 12.9,   p(χ2=12.9, n=10) = 23%✔
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Error Bars

Strictly speaking, the uncertainty is given by the model :
→ Bin central value ~ mean of the bin PDF
→ Bin uncertainty ~ RMS of the bin PDF
 The data is just what it is, a simple observed point.

⇒ One should in principle show the error bar on the prediction.
→ In practice, the usual convention is to have error bars on the data points.
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