PSI Zuoz Summer School 20

Statistics

Nicolas Berger (LAPP Annecy)

PSI Zuoz Summer School 20

Statistics
 0

 4For Physicists

Nicolas Berger (LAPP Annecy)

Lecture Plan

Statistics basic concepts (Today)
[Basic ingredients (PDFs, etc.)]
Parameter estimation (maximum likelihood, least-squares, ...)
Model testing (χ^{2} tests, hypothesis testing, p -values, ...)

Computing statistical results (Today/Tomorrow)
Discovery
Confidence intervals
Upper limits
Systematics and profiling
[Bayesian techniques]

The class will be based on both lectures and hands-on tutorial

Hands-on sessions

The hands-on session will be based on Jupyter notebooks built using the numpy/scipy/pyplot stack.

If you have a computer with you, please install anaconda before the start of the class. This provides a consistent installation of python, JupyterLab, etc.
\rightarrow Alternatively, you can also install JupyterLab as a standalone package.
\rightarrow Another solution is to run the notebooks on the public jupyter servers at mybinder.org. This will probably be slower but avoids a local install.

Warmup		notebook [solutions]	binder [solutions]
Lecture 1	Lecture Notes	notebook	binder
Lecture 2	Lecture notes	notebook	binder

The warmup item includes material that will not be covered in detail in the class, as well as an introduction to the notebooks. Please have a look before the beginning of the classes if you are unfamiliar with this.

Statistics are everywhere

 "There are three types of lies - lies, damn lies, and statistics." - Benjamin Disraeli

Credits: mattbuck / wikimedia

And Physics ?

"If your experiment needs statistics, you ought to have done a better experiment" - E. Rutherford

Introduction

Statistical methods play a critical role in many areas of physics

Higgs discovery: "We have 5σ "!

Introduction

Sometimes difficult to distinguish a bona fide discovery from a background fluctuation...

Introduction

Sometimes difficult to distinguish a bona fide discovery from a background fluctuation...

$7 /$

Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes

Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes

Muon ——Electron
---. Neutral hadron (e.g. neutron)
__Charged hadron (e.g. pion)
.-..-. Photon

Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes

Image Credits:
S. Höche,

SLAC-PUB-16160

Randomness involved in all stages
\rightarrow Classical randomness: detector reponse
\rightarrow Quantum effects in particle production, decay

Hard scattering

PDFs, Parton shower, Pileup

Decays

Detector response

Reconstruction

Measurement Errors: Energy measurement

Example: measuring the energy of a photon in a calorimeter

Measurement Errors: Energy measurement

Example: measuring the energy of a photon in a calorimeter

Measurement Errors: Energy measurement

Example: measuring the energy

 of a photon in a calorimeter

Measurement Errors: Energy measurement

Example: measuring the energy

 of a photon in a calorimeter

Measurement Errors: Energy measurement

Example: measuring the energy of a photon in a calorimeter

Cannot predict the measured value for a given event
\Rightarrow Random process \Rightarrow Need a probabilistic description

Quantum Randomness: $\mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 4 \mathrm{I}$

Quantum Randomness: $\mathrm{H} \rightarrow \mathrm{ZZ}{ }^{*} \rightarrow 4 \mathrm{I}$

Rare process: Expect 1 signal event every ~6 days

View online

Quantum Randomness: $\mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow 4 \mathrm{I}$

Statistical Modeling

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution :
$\left\{P_{i}\right\}$ for $i=0,1,2$
Properties

- $P_{i}>0$
- $\quad \Sigma P_{i}=1$

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution :
$\left\{P_{i}\right\}$ for $i=0,1,2$
Properties

- $P_{i}>0$
- $\quad \Sigma P_{i}=1$

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution:
$\left\{P_{i}\right\}$ for $i=0,1,2$
Properties

- $P_{i}>0$
- $\quad \Sigma P_{i}=1$

100 trials

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution:
$\left\{P_{i}\right\}$ for $i=0,1,2$
Properties

- $P_{i}>0$
- $\sum P_{i}=1$

100000 trials

Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities $p_{i}, i=1 . . n_{b i n s}$

5 bins

Generalizes to multiple variables:
$P(x, y)>0, \int P(x, y) d x d y=1$

Bin size $\rightarrow 0$: Probability distribution function $\mathbf{P (x)}$

High PDF value
\Rightarrow High chance to get a measurement here

$$
P(x)>0, \quad \int P(x) d x=1
$$

Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities $p_{i}, i=1 . . n_{\text {bins }}$

Generalizes to multiple variables:
$P(x, y)>0, \int P(x, y) d x d y=1$

Contours: $\mathrm{P}(\mathrm{x}, \mathrm{y})$
Bin size $\rightarrow 0$: Probability distribution function $\mathbf{P (x)}$

High PDF value
\Rightarrow High chance to get a measurement here

$$
P(x)>0, \quad \int P(x) d x=1
$$

Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities $p_{i}, i=1 . . n_{b i n s}$

Generalizes to multiple variables :
$P(x, y)>0, \int P(x, y) d x d y=1$

Bin size $\rightarrow 0$: Probability distribution function $\mathbf{P (x)}$

High PDF value
\Rightarrow High chance to get a measurement here

$$
P(x)>0, \int P(x) d x=1
$$

Random Variables

$\mathrm{X}, \mathrm{Y} .$. are Random Variables (continuous or discrete), aka. observables :
$\rightarrow X$ can take any value x, with probability $P(X=x)$.
$\rightarrow P(X=x)$ is the PDF of X, a.k.a. the Statistical Model.
\rightarrow The Observed data is one value $\mathrm{x}_{\mathrm{obs}}$ of X , drawn from $P(X=x)$.

PDF Properties: Mean

$E(X)=\langle X\rangle$: Mean of X - expected outcome on average over many measurements

$$
\begin{aligned}
\langle X\rangle & =\sum_{i} x_{i} P_{i} \\
\langle X\rangle & =\int x P(x) d x
\end{aligned}
$$

\rightarrow Property of the PDF

For measurements $x_{1} \ldots x_{n}$, then can compute the Sample mean:

$$
\bar{x}=\frac{1}{n} \sum_{i} x_{i}
$$

\rightarrow Property of the sample
\rightarrow approximates the PDF mean.

PDF Mean

PDF Mean Sample Mean

PDF Properties: (Co)variance

Variance of X :

$$
\operatorname{Var}(X)=\left\langle(X-\langle X\rangle)^{2}\right\rangle
$$

\rightarrow Average square of deviation from mean
$\rightarrow \mathrm{RMS}(\mathrm{X})=\sqrt{ } \operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{x}}$ standard deviation
Can be approximated by sample variance:

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Covariance of X and Y :

$$
\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})=\langle(\boldsymbol{X}-\langle\boldsymbol{X}\rangle)(\boldsymbol{Y}-\langle\boldsymbol{Y}\rangle)\rangle
$$

\rightarrow Large if variations of X and Y are "synchronized"
Correlation coefficient $\quad \rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \quad-1 \leq \rho \leq 1$

PDF Properties: (Co)variance

Variance of X :

$$
\operatorname{Var}(X)=\left\langle(X-\langle X\rangle)^{2}\right\rangle
$$

\rightarrow Average square of deviation from mean
$\rightarrow \mathrm{RMS}(\mathrm{X})=\sqrt{ } \operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{x}}$ standard deviation
Can be approximated by sample variance:

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Covariance of X and Y :

$$
\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})=\langle(\boldsymbol{X}-\langle\boldsymbol{X}\rangle)(\boldsymbol{Y}-\langle\boldsymbol{Y}\rangle)\rangle
$$

\rightarrow Large if variations of X and Y are "synchronized"

Correlation coefficient

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \quad-1 \leq \rho \leq 1
$$

PDF Properties: (Co)variance

Variance of X :

$$
\operatorname{Var}(X)=\left\langle(X-\langle X\rangle)^{2}\right\rangle
$$

\rightarrow Average square of deviation from mean
$\rightarrow \mathrm{RMS}(\mathrm{X})=\sqrt{ } \operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{x}}$ standard deviation
Can be approximated by sample variance:

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Covariance of X and Y :

$$
\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})=\langle(\boldsymbol{X}-\langle\boldsymbol{X}\rangle)(\boldsymbol{Y}-\langle\boldsymbol{Y}\rangle)\rangle
$$

\rightarrow Large if variations of X and Y are "synchronized"
Correlation coefficient $\quad \rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \quad-1 \leq \rho \leq 1$

"Linear" vs. "non-linear" correlations

For non-Gaussian cases, the Correlation coefficient ρ is not the whole story:

Source: Wikipedia
In particular, variables can still be correlated even when $\rho=0$: "Non-linear" correlations.

Gaussian PDF

Gaussian distribution:

$$
G\left(x ; X_{0}, \sigma\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(x-X_{0}\right)^{2}}{2 \sigma^{2}}}
$$

\rightarrow Mean : X_{0}

\rightarrow Variance : $\sigma^{2}(\Rightarrow \mathrm{RMS}=\sigma)$

Generalize to \mathbf{N} dimensions:
\rightarrow Mean : X
\rightarrow Covariance matrix :

$$
\begin{aligned}
C & =\left[\begin{array}{ll}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]
\end{aligned}
$$

Gaussian Quantiles

$$
P\left(\left|x-x_{0}\right|>Z \sigma\right)
$$

Consider $\quad z=\left(\frac{\boldsymbol{x}-\boldsymbol{x}_{0}}{\boldsymbol{\sigma}}\right) \quad$ "pull" of x
$G\left(x ; x_{0}, \sigma\right)$ depends only on $z \sim G(z ; 0,1)$
Probability $\mathrm{P}\left(\left|\mathrm{x}-\mathrm{x}_{0}\right|>\mathrm{Z} \sigma\right)$ to be away from the mean:
0.317
0.045
0.003
3×10^{-5}
6×10^{-7}

Gaussian Cumulative Distribution Function (CDF) :

$$
\Phi(z)=\int_{-\infty}^{z} G(u ; 0,1) d u
$$

Gaussian Quantiles

$Z \quad P\left(\left|x-x_{0}\right|>Z \sigma\right)$

Consider $\quad z=\left(\frac{x-x_{0}}{\sigma}\right) \quad$ "pull" of x
$G\left(x ; x_{0}, \sigma\right)$ depends only on $z \sim G(z ; 0,1)$
Probability $\mathrm{P}\left(\left|\mathrm{x}-\mathrm{x}_{0}\right|>\mathrm{Z} \sigma\right)$ to be away from the mean:

$$
\begin{equation*}
z=\left(\frac{x-x_{0}}{\sigma}\right) \quad \text { "pull" of } x \tag{2}
\end{equation*}
$$

$$
3
$$

$$
0.003
$$

4
3×10^{-5}
6×10^{-7}

Gaussian Cumulative Distribution Function (CDF) :

$$
\Phi(z)=\int_{-\infty}^{z} G(u ; 0,1) d u
$$

Gaussian Quantiles

$Z \quad P\left(\left|x-x_{0}\right|>Z \sigma\right)$

Consider $\quad z=\left(\frac{\boldsymbol{x}-\boldsymbol{x}_{0}}{\boldsymbol{\sigma}}\right) \quad$ "pull" of x
$G\left(x ; x_{0}, \sigma\right)$ depends only on $z \sim G(z ; 0,1)$
Probability $\mathrm{P}\left(\left|\mathrm{x}-\mathrm{x}_{0}\right|>\mathrm{Z} \sigma\right)$ to be away from the mean:

Gaussian Cumulative Distribution Function (CDF) :

$$
\Phi(z)=\int_{-\infty}^{z} G(u ; 0,1) d u
$$

Central Limit Theorem

For an observable X with any ${ }^{\left({ }^{*}\right)}$ distribution, one has

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \stackrel{n \rightarrow \infty}{\sim} G\left(\langle X\rangle, \frac{\sigma_{X}}{\sqrt{n}}\right)
$$

What this means:

- The average of many measurements is always Gaussian, whatever the distribution for a single measurement
- The mean of the Gaussian is the average of the single measurements
- The RMS of the Gaussian decreases as $\sqrt{ } \mathbf{n}$: smaller fluctuations when averaging over many measurements

Another version: $\quad \sum_{i=1}^{n} x_{i} \stackrel{n \rightarrow \infty}{\sim} G\left(n\langle X\rangle, \sqrt{n} \sigma_{X}\right)$
Mean scales like n, but RMS only like $\sqrt{ } n$

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Chi-squared

Multiple Independent Gaussian variables x_{i} : Define

$$
\chi^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-x_{i}^{0}}{\sigma_{i}}\right)^{2}
$$

Measures global distance from reference point ($\mathrm{x}_{1}{ }^{0} \ldots . \mathrm{x}_{\mathrm{n}}{ }^{0}$)

Distribution depends on n :

Rule of thumb:

Chi-squared

Multiple Independent Gaussian variables x_{i} : Define

$$
\chi^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-x_{i}^{0}}{\sigma_{i}}\right)^{2}
$$

Measures global distance from reference point ($\mathrm{x}_{1}{ }^{0} \ldots . \mathrm{x}_{\mathrm{n}}{ }^{0}$)

Distribution depends on n :

Rule of thumb:

χ^{2} / n should be $\lesssim 1$

Histogram Chi-squared

Histogram $\chi 2$ with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) - (number of fit parameters)

BLUE histogram vs. flat reference

$$
\chi^{2}=12.9, \quad \mathrm{p}\left(\chi^{2}=12.9, \mathrm{n}=10\right)=23 \%
$$

Histogram Chi-squared

Histogram $\chi 2$ with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) - (number of fit parameters)

BLUE histogram vs. flat reference $\chi^{2}=12.9, p\left(\chi^{2}=12.9, n=10\right)=23 \%$ RED histogram vs. flat reference $\chi^{2}=38.8, \mathrm{P}\left(\mathrm{x}^{2}=38.8, \mathrm{n}=10\right)=0.003 \%$

Histogram Chi-squared

Histogram $\chi 2$ with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) - (number of fit parameters)

BLUE histogram vs. flat reference $\chi^{2}=12.9, p\left(\chi^{2}=12.9, n=10\right)=23 \%$

RED histogram vs. flat reference $\chi^{2}=38.8, \mathrm{P}\left(\mathrm{x}^{2}=38.8, \mathrm{n}=10\right)=0.003 \%$

RED histogram vs. correct reference $x 2=9.5, p(x 2=9.5, n=10)=49 \%$

Error Bars

Strictly speaking, the uncertainty is given by the model :
\rightarrow Bin central value \sim mean of the bin PDF
\rightarrow Bin uncertainty \sim RMS of the bin PDF
The data is just what it is, a simple observed point.
\Rightarrow One should in principle show the error bar on the prediction.
\rightarrow In practice, the usual convention is to have error bars on the data points.

Error Bars

Strictly speaking, the uncertainty is given by the model :
\rightarrow Bin central value \sim mean of the bin PDF
\rightarrow Bin uncertainty ~RMS of the bin PDF
The data is just what it is, a simple observed point.
\Rightarrow One should in principle show the error bar on the prediction.
\rightarrow In practice, the usual convention is to have error bars on the data points.

Statistical Modeling

Example 1: Z counting

Measure the cross-section (event rate) of the $Z \rightarrow$ ee process

$$
\sigma^{35000 \pm 187}=\frac{1}{n_{\text {data }}-N_{b k g}} \begin{gathered}
175 \pm 8 \\
C_{\text {fid }} L \\
0.552 \pm 0.006
\end{gathered}
$$

$$
\sigma^{\text {fid }}=0.781 \pm 0.004 \text { (stat) } \pm 0.018 \text { (syst) nb }
$$

Fluctuations in the data counts

Other uncertainties (assumptions, parameter values)

Example 2: ftH $\rightarrow \mathrm{bb}$

Event counting in different regions:
Multiple-bin counting

Lots of information available

\rightarrow Potentially higher sensitivity
\rightarrow How to make optimal use of it ?

Example 3: unbinned modeling

All modeling done using continuous distributions:

$$
\begin{equation*}
\boldsymbol{P}_{\text {total }}\left(m_{\gamma \gamma}\right)=\frac{S}{S+B} P_{\text {signal }}\left(m_{\gamma \gamma} ; m_{H}\right)+\frac{B}{S+B} \boldsymbol{P}_{\mathrm{bkg}}\left(m_{\gamma \gamma}\right) \tag{32}
\end{equation*}
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution
$\lambda=0.5$

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

Mean $=\lambda$
Variance $=\lambda$
$\sigma=\sqrt{ } \lambda$

For a counting measurement, RMS = $\sqrt{ }$ Mean

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution $\quad P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}$

$$
\begin{array}{ll}
L & (1-P)^{N-n} \stackrel{n \ll N}{\sim}\left(1-\frac{\lambda}{N}\right)^{N} \stackrel{N \ngtr 1}{\sim} e^{-\lambda} \\
\text { Mean }=\lambda & \text { For a counting } \\
\text { Variance }=\lambda & \text { measurement, } \\
\sigma=\sqrt{ } \lambda & \text { RMS }=\sqrt{ } \text { Mean }
\end{array}
$$

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

$\lambda=3$

$$
\square(1-P)^{N-n \stackrel{n}{\aleph} N}\left(1-\frac{\lambda}{N}\right)^{N} \stackrel{N \gg 1}{\sim} e^{-\lambda}
$$

$$
\begin{aligned}
& \text { Mean }=\lambda \\
& \text { Variance }=\lambda \\
& \sigma=\sqrt{ } \lambda
\end{aligned}
$$

For a counting measurement, RMS $=\sqrt{ }$ Mean

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

$\lambda=5$

$$
\begin{array}{ll}
L & (1-P)^{N-n} \stackrel{n \ll N}{\sim}\left(1-\frac{\lambda}{N}\right)^{N} \stackrel{N \ngtr 1}{\sim} e^{-\lambda} \\
\text { Mean }=\lambda & \text { For a counting } \\
\text { Variance }=\lambda & \text { measurement, } \\
\sigma=\sqrt{ } \lambda & \text { RMS }=\sqrt{ } \text { Mean }
\end{array}
$$

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events

Poisson distribution
$\lambda=10$

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

$$
\text { L }(1-P)^{N-n} \stackrel{n \ll N}{\sim}\left(1-\frac{\lambda}{N}\right)^{N} \stackrel{N \gtrsim 1}{\sim} e^{-\lambda}
$$

$$
\text { Mean }=\lambda
$$

$$
\text { Variance }=\lambda
$$

$$
\sigma=\sqrt{ } \lambda
$$

For a counting measurement, RMS $=\sqrt{ }$ Mean

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} \boldsymbol{G}(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution $\quad P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}$

$$
\square(\mathbf{1}-\boldsymbol{P})^{N-n} \stackrel{n \ll N}{\sim}\left(\mathbf{1}-\frac{\boldsymbol{\lambda}}{N}\right)^{N} \stackrel{N \gg 1}{\sim} \boldsymbol{e}^{-\lambda}
$$

$$
\begin{aligned}
& \text { Mean }=\lambda \\
& \text { Variance }=\lambda \\
& \sigma=\sqrt{ } \lambda
\end{aligned}
$$

For a counting measurement,

RMS $=\sqrt{ }$ Mean
Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

Statistical Model for Counting

Observable: number of events \mathbf{n}
Typically both Signal and Background present:

$$
P(n ; S, B)=e^{-(s+B)} \frac{(S+B)^{n}}{n!}
$$

S:\# of events from signal process
B : \# of events from bkg. processes)

Model has parameters S and B.
B can be known a priori or not (S usually not...)
\rightarrow Example: assume \mathbf{B} is known, use measured n to find out about \mathbf{S}.

Multiple counting bins

Count in bins of a variable \Rightarrow histogram $\mathrm{n}_{1} \ldots \mathrm{n}_{\mathrm{N}}$.
(N : number of bins)
Per-bin fractions (=shapes)
of Signal and Background
$\boldsymbol{P}\left(\left\{n_{i}\right\} ; S, B\right)=\prod_{i=1}^{N} \underbrace{-\left(s f_{s, i}+B f_{p, i}\right)} \frac{\left(\boldsymbol{S f}_{S, i}+\boldsymbol{B} f_{B, i}\right)^{n_{i}}}{n_{i}!}$
Poisson distribution in each bin

Shapes f typically obtained from simulated events (Monte Carlo)
\rightarrow HEP: typically excellent modeling from simulation, although some uncertainties need to be accounted for.

However not always possible to generate sufficiently large MC samples MC stat fluctuations can create artefacts, especially for S < B.

Model Parameters

Model typically includes:

- Parameters of interest (POIs) : what we want to measure
$\rightarrow \mathrm{S}, \mathrm{m}_{\mathrm{w}}, \ldots$
- Nuisance parameters (NPs) : other parameters needed to define the model
\rightarrow Background levels (B)
\rightarrow For binned data, frig $_{\mathrm{ig}}^{\mathrm{i}}, \mathrm{ffkg}_{\mathrm{i}}$

NPs must be either:
\rightarrow Known a priori (within uncertainties) or
\rightarrow Constrained by the data

Takeaways

Random data must be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(\boldsymbol{n} ; \boldsymbol{S}, \boldsymbol{B})=e^{-(s+\boldsymbol{B})} \frac{(\boldsymbol{S}+\boldsymbol{B})^{n}}{n!}$
Binned shape analysis	$\mathrm{n}_{\mathrm{i}}, \mathrm{i}=1 . . \mathrm{N}_{\text {bins }}$	Poisson product $P\left(n_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\prod_{i=1}^{n_{\mathrm{bins}}} e^{-\left(\boldsymbol{S} f_{i}^{\mathrm{sig}}+\boldsymbol{B} f_{i}^{\mathrm{kgs})}\left(\boldsymbol{S} \boldsymbol{f}_{i}^{\mathrm{sig}}+\boldsymbol{B} f_{i}^{\mathrm{bkg}}\right)^{n_{i}}\right.} \underset{n_{i}!}{ }$
Unbinned shape analysis	$m_{i}, \mathrm{i}=1 . . \mathrm{n}_{\text {evts }}$	Extended Unbinned Likelihood $P\left(\boldsymbol{m}_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\frac{e^{-(\boldsymbol{s}+\boldsymbol{B})}}{\boldsymbol{n}_{\mathrm{evvs}}!} \prod_{i=1}^{n_{\mathrm{ves}}} \boldsymbol{S} P_{\mathrm{sig}}\left(\boldsymbol{m}_{i}\right)+\boldsymbol{B} P_{\mathrm{bkg}}\left(\boldsymbol{m}_{i}\right)$

Model can include multiple categories, each with a separate description Includes parameters of interest (POIs) but also nuisance parameters (NPs) Next step: use the model to obtain information on the POIs

Hypothesis Testing and discovery

Discovery Testing

We see an unexpected feature in our data, is it a signal for new physics or a fluctuation ?
e.g. Higgs discovery : "We have 5 σ^{\prime} !

Phys. Lett. B 716 (2012) 1-29

Discovery Testing

Say we have a Gaussian measurement with a background $\mathbf{B = 1 0 0}$, and we measure $\mathbf{n}=120$

Did we just discover something ? Maybe :-) (but not very likely)

The measured signal is $S=20$.

$$
\mathrm{S}=\mathrm{n}_{\text {obs }}-\mathrm{B}
$$

Uncertainty on B is $\sqrt{ } \mathrm{B}=10$
\Rightarrow Significance Z $=2$
\Rightarrow we are $\sim 2 \sigma$ away from $S=0$.

Gaussian quantiles :

$Z=2$ happens $p_{0} \sim 2.3 \%$ of the time if $S=0$
P-value:

$$
p_{0}=1-\Phi(Z)
$$

\Rightarrow Rare, but not exceptional

$$
\Phi(Z)=\int_{-\infty}^{Z} G(u ; \mathbf{0}, \mathbf{1}) d u
$$

Discovery Testing

$n_{\text {obs }}$	s	Z	p_{0}
105	5	0.5σ	31%
110	10	1σ	16%
120	20	2σ	2.3%
130	30	3σ	0.1%

Straightforward in this Gaussian case

Need to be able to do the same in more complex cases:

- Determine S

Evidence
Discovery

Maximum Likelihood Estimation

What a PDF is for

Model describes the distribution of the observable: P(data; parameters)
\Rightarrow Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

$$
P(\lambda=5)
$$

2, 5, 3, 7, 4, 9,
Each entry = separate "experiment"

What a PDF is also for: Likelihood

Model describes the distribution of the observable: P(data; parameters)
\Rightarrow Possible outcomes of the experiment, for given parameter values
We want the other direction: use data to get information on parameters

$$
P(\lambda=\text { ? })
$$

2

Likelihood: L(parameters) = P(data; parameters)
\rightarrow same as the PDF, but seen as function of the parameters

Maximum Likelihood Estimation

To estimate a parameter μ, find the value $\hat{\boldsymbol{\mu}}$ that maximizes $L(\mu)$
Maximum Likelihood

$$
\hat{\mu}=\arg \max L(\mu)
$$

MLE: the value of μ for which this data was most likely to occur The MLE is a function of the data - itself an observable No guarantee it is the true value (data may be "unlikely") but sensible estimate

Gaussian case

Gaussian case

Gaussian case

Multiple Gaussian bins

-2 log Likelihood:

$$
\lambda(\mu)=-2 \log L(\mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}
$$

Maximum likelihood \Leftrightarrow Minimum χ^{2}
\Leftrightarrow Least-squares minimization

However typically need to perform non-linear minimization in other cases.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Many algorithms - gradient-based, etc.

Multiple Gaussian bins

-2 log Likelihood:

$$
\lambda(\mu)=-2 \log L(\mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}
$$

Maximum likelihood \Leftrightarrow Minimum χ^{2}
\Leftrightarrow Least-squares minimization

However typically need to perform non-linear minimization in other cases.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Many algorithms - gradient-based, etc.

Multiple Gaussian bins

-2 log Likelihood:

$$
\lambda(\mu)=-2 \log L(\mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-\mu_{i}}{\sigma_{i}}\right)^{2}
$$

Maximum likelihood \Leftrightarrow Minimum χ^{2}
\Leftrightarrow Least-squares minimization

However typically need to perform non-linear minimization in other cases.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Many algorithms - gradient-based, etc.

Multiple Gaussian bins

-2 log Likelihood:

$$
\begin{aligned}
& \qquad \lambda(\mu)=-2 \log L(\mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-\mu_{i}}{\sigma_{i}}\right)^{2} \\
& \text { Maximum likelihood } \Leftrightarrow \text { Minimum } \chi^{2} \\
& \Leftrightarrow \\
& \\
& \\
& \text { Least-squares } \\
& \text { minimization }
\end{aligned}
$$

However typically need to perform non-linear minimization in other cases.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Many algorithms - gradient-based, etc.

Hypothesis Testing

Null Hypothesis: assumption on POIs, say value of S (e.g. $\mathbf{H}_{0}: \mathbf{S}=\mathbf{0}$)
\rightarrow Goal : decide if H_{0} is favored or disfavored using a test based on the data

Possible outcomes:	Data disfavors H_{0} (Discovery claim)	Data favors H_{0} (Nothing found)
H_{0} is false (New physics!)	Discovery!	Missed discovery
H_{0} is true (Nothing new)	False discovery	

"... the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation. Every experiment may be said to exist only to give the facts a chance of disproving the null hypothesis." - R. A. Fisher

Hypothesis Testing

Hypothesis：assumption on model parameters，say value of $S\left(e . g . H_{0}: S=0\right)$

	Data disfavo （Discovery c	Data favors H_{0} （Nothing found）	
H_{0} is false （New physics！）	Discovery！	Type－II error （Missed discovery）	
H_{0} is true （Nothing new）	Type－I error （False discovery）	No new physics， none found	可到四

Lower Type－I errors \Leftrightarrow Higher Type－II errors and vice versa：cannot have everything！
\rightarrow Goal：test that minimizes Type－II errors for a given level of Type－I error．

ROC Curves

"Receiver operating characteristic"

 (ROC) Curve:\rightarrow Shows Type-I vs Type-II rates for different selections
\rightarrow All curves monotonically decrease from $(0,1)$ to $(1,0)$
\rightarrow Better discriminators more bent towards (1,1)

\rightarrow Goal: test that minimizes Type-II errors for given level of Type-l error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " 5σ ")

ROC Curves

"Receiver operating characteristic" (ROC) Curve:
\rightarrow Shows Type-I vs Type-II rates for different selections
\rightarrow All curves monotonically decrease from $(0,1)$ to $(1,0)$
\rightarrow Better discriminators more bent towards (1,1)

\rightarrow Goal: test that minimizes Type-II errors for given level of Type-l error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " 5σ ")

ROC Curves

"Receiver operating characteristic" (ROC) Curve:
\rightarrow Shows Type-I vs Type-II rates for different selections
\rightarrow All curves monotonically decrease from $(0,1)$ to $(1,0)$
\rightarrow Better discriminators more bent towards (1,1)

\rightarrow Goal: test that minimizes Type-II errors for given level of Type-l error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " 5σ ")

Discovery Testing

$n_{\text {obs }}$	s	Z	p_{0}
105	5	0.5σ	31%
110	10	1σ	16%
120	20	2σ	2.3%
130	30	3σ	0.1%

Straightforward in this Gaussian case

Need to be able to do the same in more complex cases:

- Determine S

Evidence
Discovery

Testing for Evidence in Gaussian counting

Testing for Evidence in Gaussian counting

Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses H_{0} and H_{1}, the optimal discriminator is the Likelihood ratio (LR)
$\frac{L\left(H_{1} ; \text { data }\right)}{L\left(H_{0} ; \text { data }\right)}$
e.g. $\frac{L(S=5 ; \text { data })}{L(S=0 ; \text { data })}$

Caveat: Strictly true only for simple hypotheses (no free parameters)

As for MLE, choose the hypothesis that is more likely given the data we have.
\rightarrow Always need an alternate hypothesis to test against the null.
\rightarrow Minimizes Type-II uncertainties for given level of Type-I uncertainties
\rightarrow In the following: all tests based on LR, will focus on p-values (Type-I errors), trusting that Type-II errors are anyway as small as they can be...

Discovery: Test Statistic

Discovery :

- H_{0} : background only $(\mathrm{S}=0)$ against

- H_{1} : presence of a signal $(\mathbf{S}>0)$
\rightarrow For H_{1}, any $\mathrm{S}>0$ is possible, which to use ? The one preferred by the data, $\hat{\mathbf{S}}$.
\Rightarrow Use Likelihood ratio: $\frac{L(S=0)}{L(\hat{S})}$
\rightarrow In fact use the test statistic $q_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})}$

Note: for $\hat{S}<0$, set $\mathrm{q}_{0}=0$ to reject negative signals ("one-sided test statistic") ${ }_{\text {/ }}^{54}$

Discovery p-value

Large values of $-2 \log \frac{L(S=0)}{L(\hat{S})}$ if:

data
\Rightarrow observed S is far from 0
$\Rightarrow \mathrm{H}_{0}(\mathrm{~S}=0)$ disfavored compared to $\mathrm{H}_{1}(\mathrm{~S} \neq 0)$.
\Rightarrow Large S !

Compute p-value in the tail of the distribution
 to exclude \mathbf{H}_{0} (... and claim a discovery!)

$$
p_{0}=\int_{q_{0}^{\text {obs }}}^{\infty} f\left(q_{0} \mid S=0\right) d q_{0}
$$

Need to know $f\left(q_{0} \mid S=0\right)$, the distribution of the test statistic...

55

Asymptotic distribution of q_{0}

Gaussian regime for $\hat{\mathbf{S}}$ (e.g. large $\mathrm{n}_{\text {evts }}$, Central-limit theorem) :
Wilk's Theorem: \mathbf{q}_{0} distributed as $\chi^{2}\left(n_{\text {par }}\right)$ for $S=0$
$\Rightarrow \mathrm{n}_{\mathrm{par}}=1: \sqrt{ } \mathrm{q}_{0}$ is distributed as a Gaussian
\Rightarrow Can compute p -values from Gaussian quantiles

$$
p_{0}=1-\Phi\left(\sqrt{q_{0}}\right)
$$

\Rightarrow Even more simply, the significance is:

$$
Z=\sqrt{q_{0}}
$$

Typically works well already for for event counts of O(5) and above \Rightarrow Widely applicable

Homework 1: Gaussian Counting

Count number of events \mathbf{n} in data

\rightarrow Assume n large enough so process is Gaussian
\rightarrow Assume B is known, and we measure S

Likelihood :

$$
L\left(S ; \boldsymbol{n}_{\mathrm{obs}}\right)=\boldsymbol{e}^{-\frac{1}{2}\left(\frac{n_{\mathrm{abs}}-(S+B)}{\sqrt{S+B})^{2}}\right.}
$$

\rightarrow Find the best-fit value (MLE) Ŝ for the signal (can use $\lambda=-2 \log L$ instead of L for simplicity)
\rightarrow Find the expression of q_{0} for $\hat{\mathrm{s}}>0$.
\rightarrow Find the expression for the significance
Find the

Homework 2: Poisson Counting

Same problem but now not assuming Gaussian behavior:

$$
L(S ; n)=e^{-(S+B)}(S+B)^{n}
$$

\rightarrow As before, compute $\hat{\mathrm{S}}$, and q_{0}
(Can remove the n ! constant since we're only dealing with L ratios)
\rightarrow Compute $\mathrm{Z}=\sqrt{ } \mathrm{a}_{0}$, assuming asymptotic behavior

Solution:

$$
Z=\sqrt{2\left\lfloor\left.(\hat{S}+B) \log \left(1+\frac{\hat{S}}{B}\right)-\hat{S} \right\rvert\,\right.}
$$

Exact result can be obtained using pseudo-experiments \rightarrow close to $\sqrt{ } \mathrm{q}_{0}$ result

Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of S+B (down to 5 events!)

Eur.Phys.J.C71:1554,2011

Discovery Thresholds

Evidence : $3 \sigma \Leftrightarrow p_{0}=0.3 \% \Leftrightarrow 1$ chance in 300

Discovery: $5 \sigma \Leftrightarrow p_{0}=310^{-7} \Leftrightarrow 1$ chance in 3.5 M
Why so high thresholds? (from Louis Lyons):

- Look-elsewhere effect: searches typically cover multiple independent regions \Rightarrow Higher chance to have a fluctuation "somewhere"
$N_{\text {trials }} \sim 1000$: local $5 \sigma \Leftrightarrow \mathrm{O}\left(10^{-4}\right)$ more reasonable
- Mismodeled systematics: factor 2 error in syst-dominated analysis \Rightarrow factor 2 error on Z...

- History: 3σ and 4σ excesses do occur regularly, for the reasons above

Extraordinary claims require extraordinary evidence!

Extra Slides

Rare Processes?

HEP : almost always use Poisson distributions. Why ?

ATLAS :

- Event rate ~ 1 GHz

$$
\left(\mathrm{L} \sim 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \sim 10 \mathrm{nb}^{-1} / \mathrm{s}, \sigma_{\mathrm{tot}} \sim 10^{8} \mathrm{nb},\right)
$$

- Trigger rate ~ 1 kHz
(Higgs rate $\sim 0.1 \mathrm{~Hz}$)
$\Rightarrow \mathrm{p} \sim 10^{-6} \ll 1\left(\mathrm{p}_{\mathrm{H} \rightarrow \mathrm{W}} \sim 10^{-13}\right)$
A day of data: $\mathrm{N} \sim 10^{14} \gg 1$
\Rightarrow Poisson regime! Similarly true in many other physics situations.

Unbinned Shape Analysis

Observable: set of values $m_{1} \ldots m_{n}$, one per event
\rightarrow Describe shape of the distribution of m
\rightarrow Deduce the probability to observe $m_{1} \ldots m_{n}$

$\mathrm{H} \rightarrow \mathrm{\gamma} \mathrm{\gamma}$-inspired example:

- Gaussian signal $\quad P_{\text {signal }}(m)=G\left(m ; m_{H}, \sigma\right)$
- Exponential bkg $\quad \boldsymbol{P}_{\text {bkg }}(m)=\alpha \boldsymbol{e}^{-\alpha m}$

Expected yields: S, B
\Rightarrow Total PDF for a single event:
$P_{\text {total }}(m)=\frac{S}{S+B} G\left(m ; m_{H}, \sigma\right)+\frac{B}{S+B} \alpha e^{-\alpha m}$
\Rightarrow Total PDF for a dataset
Probability to observe the value m_{i}

Probability to observe n events $p(\{m)$
$P\left(\left\{m_{i}\right\}_{i=1 \ldots n}\right)=e^{-(S+B)} \frac{(S+B)^{n}}{n!} \prod_{i=1}^{n} \frac{S}{S+B} G\left(m_{i} ; m_{H}, \sigma\right)+\frac{B}{S+B} \alpha e^{-\alpha m_{i}}$

Poisson Example

Assume Poisson distribution with $\mathrm{B}=0: \quad \underset{\text { Say we observe } \mathrm{n}=5 \text {, want to infer information on the parameter } \mathrm{S}}{\boldsymbol{P}(n ; S)=} e^{-s} \frac{\boldsymbol{S}^{\boldsymbol{n}}}{n!}$
\rightarrow Try different values of S for a fixed data value $\mathrm{n}=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-S} \frac{S^{5}}{5!}
$$

Poisson Example

Assume Poisson distribution with $\mathrm{B}=0: \quad \underset{\text { As }}{\text { Say we observe } \mathrm{n}=5 \text {, want to infer information on the parameter } \mathrm{S}} \mathrm{e}^{-s} \frac{\boldsymbol{S}^{n}}{n!}$
\rightarrow Try different values of S for a fixed data value $\mathrm{n}=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

$\begin{aligned} & \text { Assume Poisson distribution with } \mathrm{B}=0: \\ & \text { Say we observe } \mathrm{n}=5 \text {, want to infer information on the parameter } \mathrm{S}\end{aligned} \quad \boldsymbol{P}(n ; S)=\boldsymbol{S}^{-s}$
\rightarrow Try different values of S for a fixed data value $\mathrm{n}=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

Assume Poisson distribution with $\mathrm{B}=0: \quad \underset{\text { Sation on the parameter } S}{\boldsymbol{S}} \mathrm{e}^{-s} \frac{S^{n}}{n!}$
\rightarrow Try different values of S for a fixed data value $n=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

Assume Poisson distribution with $B=0$: Say we observe $n=5$, want to infer information on the parameter $S \quad e^{-s} \frac{S^{n}}{n!}$
\rightarrow Try different values of S for a fixed data value $n=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

63

MLEs in Shape Analyses

Binned shape analysis:

$$
L\left(\boldsymbol{S} ; \boldsymbol{n}_{\boldsymbol{i}}\right)=P\left(\boldsymbol{n}_{i} ; \boldsymbol{S}\right)=\prod_{i=1}^{N} \operatorname{Pois}\left(\boldsymbol{n}_{i} ; \boldsymbol{S} \boldsymbol{f}_{i}+B_{i}\right)
$$

Maximize global L(S) (each bin may prefer a different \mathbf{S}) In practice easier to minimize

$$
\lambda_{\text {Poi }}(S)=-2 \log L(S)=-2 \sum_{i=1}^{N} \log \operatorname{Pois}\left(n_{i} ; \boldsymbol{S} f_{i}+B_{i}\right) \quad \text { Needs a computer... }
$$ In the Gaussian limit

$$
\lambda_{\text {Gas }}(\boldsymbol{S})=\sum_{i=1}^{N}-2 \log G\left(\boldsymbol{n}_{i} ; \boldsymbol{S} f_{i}+B_{i}, \sigma_{i}\right)=\sum_{i=1}^{N}\left|\frac{\boldsymbol{n}_{i}-\left(\boldsymbol{S} f_{i}+B_{i}\right)}{\sigma_{i}}\right|^{2} \quad x^{2} \text { formula! }
$$

\rightarrow Gaussian MLE (min x^{2} or min $\lambda_{\text {Gus }}$): Best fit value in a x^{2} (Least-squares) fit \rightarrow Poisson MLE (min $\lambda_{\text {polis }}$: Best fit value in a likelihood fit (in ROOT, fit option "L") In RooFit, $\boldsymbol{\lambda}_{\text {Pis }} \Rightarrow$ RooAbsPdf: :fyi to(), $\boldsymbol{\lambda}_{\text {Gus }} \Rightarrow$ RooAbsPdf::chi2FitTo().

$\mathrm{H} \rightarrow \mathrm{\gamma} \gamma$

$$
L\left(\boldsymbol{S}, \boldsymbol{B} ; \boldsymbol{m}_{i}\right)=e^{-(\boldsymbol{s}+\boldsymbol{B})} \prod_{i=1}^{n_{\text {vs }}} \boldsymbol{S} P_{\text {sig }}\left(\boldsymbol{m}_{i}\right)+\boldsymbol{B} P_{\text {bkg }}\left(\boldsymbol{m}_{\boldsymbol{i}}\right)
$$

Estimate the MLE \hat{S} of ?
\rightarrow Perform (likelihood) best-fit of model to data
\Rightarrow fit result for S is the desired $\hat{\mathrm{S}}$.

In particle physics, often use the MINUIT minimizer within ROOT.

MLE Properties

- Asymptotically Gaussian and unbiased $\langle\hat{\mu}\rangle=\mu^{*}$ for $n \rightarrow \infty$ $\underset{\operatorname{P}(\hat{\mu})}{ } \propto \exp \left|-\frac{\left(\hat{\mu}-\mu^{*}\right)^{2}}{2 \sigma_{\hat{\mu}}^{2}}\right|$ for $n \rightarrow \infty$
Standard deviation of the distribution of $\hat{\mu}$ for large enough datasets
- Asymptotically Efficient : σ_{p} is the lowest possible value (in the limit $\mathrm{n} \rightarrow \infty$) among consistent estimators.
\rightarrow MLE captures all the available information in the data
- Also consistent: $\hat{\mu}$ converges to the true value for large n ,

- Log-likelihood: Can also minimize $\lambda=-2 \log \mathrm{~L}$
\rightarrow Usually more efficient numerically
\rightarrow For Gaussian L, λ is parabolic:
- Can drop multiplicative constants in L(additive constants in λ)

Extra: Fisher Information

Fisher Information:

$$
I(\mu)=\left|\left|\frac{\partial}{\partial \mu} \log L(\mu)\right|^{2}\right|=-\left|\frac{\partial^{2}}{\partial \mu^{2}} \log L(\mu)\right|
$$

Measures the amount of information available in the measurement of μ.

Gaussian likelihood: $\quad I(\mu)=\frac{1}{\sigma_{\text {Gauss }}^{2}}$
\rightarrow smaller $\sigma_{\text {Gauss }} \Rightarrow$ more information.

$$
\operatorname{Var}(\tilde{\mu}) \geq \frac{1}{I(\mu)}
$$

Gaussian case:

- For a Gaussian estimator $\tilde{\mu}$

$$
P(\tilde{\mu}) \propto \exp \left(-\frac{\left(\tilde{\mu}-\mu^{*}\right)^{2}}{2 \sigma_{\tilde{\mu}}^{2}}\right)
$$

- MLE: $\operatorname{Var}(\hat{\mu})=\sigma_{\hat{\mu}}{ }^{2}$

Cramer-Rao: $\operatorname{Var}(\tilde{\mu}) \geq \sigma_{\text {Gauss }}{ }^{2}=\sigma_{\tilde{\mathrm{H}}}{ }^{2}$

For any estimator $\tilde{\mu}$.
\rightarrow cannot be more precise than allowed by information in the measurement.
Efficient estimators reach the bound : e.g. MLE in the large dataset limit.

Some Examples

High-mass X $\boldsymbol{\text { WY S Search: JHEP } 0 9 \text { (2016) } 1}$

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

Upper Limit Pathologies

Upper limit: $\quad \mathrm{S}_{\mathrm{up}} \sim \hat{\mathbf{S}}+1.64 \sigma_{\mathrm{s}}$.
Problem: for negative Ŝ, get very good observed limit.
\rightarrow For \widehat{S} sufficiently negative, even $\mathrm{S}_{\mathrm{up}}<0$!

How can this be ?
\rightarrow Background modeling issue ?... Or:
\rightarrow This is a 95% limit $\Rightarrow 5 \%$ of the time, the limit wrongly excludes the true value, e.g. $S^{*}=0$.

Options

\rightarrow live with it: sometimes report limit < 0
\rightarrow Special procedure to avoid these cases, since if we assume S must be >0, we know a priori this is just a fluctuation.

Usual solution in HEP : CL_{s}.
\rightarrow Compute modified p-value

$$
\begin{aligned}
& \boldsymbol{p}_{C L_{s}}={\frac{\boldsymbol{p}_{S_{0}}{ }^{\circ}}{\left(1-\boldsymbol{p}_{B}\right)}}_{\text {The } \mathrm{H}\left(\mathrm{~S}=\mathrm{S}_{0}\right)(=5 \%)}^{\text {The } \mathrm{p} \text {-value computed }} \\
& \text { under } \mathrm{H}(\mathrm{~S}=0)
\end{aligned}
$$

\Rightarrow Rescale exclusion at S_{0} by exclusion at $\mathrm{S}=0$.
\rightarrow Somewhat ad-hoc, but good properties...
Ŝ compatible with $0: p_{B} \sim O(1)$
$p_{\mathrm{cls}} \sim p_{\mathrm{so}} \sim 5 \%$, no change.

Far-negative \widehat{S} : $1-p_{B} \ll 1$
$p_{\mathrm{Cls}} \sim \mathrm{p}_{\mathrm{s} 0} /\left(1-\mathrm{p}_{\mathrm{B}}\right) \gg 5 \%$
\rightarrow lower exclusion \Rightarrow higher limit, usually >0 as desired

Drawback: overcoverage
\rightarrow limit is claimed to be $95 \% \mathrm{CL}$, but actually $>95 \% \mathrm{CL}$ for small $1-\mathrm{p}_{\mathrm{B}}$.

CL_{s} : Gaussian Bands

Usual Gaussian counting example with known B: $95 \% \mathrm{CL}_{\mathrm{s}}$ upper limit on S :

$$
S_{\mathrm{up}}=\hat{S}+\left[\boldsymbol{\Phi}^{-1}\left(1-0.05 \Phi\left(\hat{S} / \sigma_{S}\right)\right)\right] \sigma_{S} \quad \begin{gathered}
\text { with } \\
\sigma_{S}=\sqrt{B}
\end{gathered}
$$

Compute expected bands for $\mathrm{S}=0$:
\rightarrow Asimov dataset $\Leftrightarrow \hat{\mathbf{S}}=\mathbf{0}$

$$
S_{\mathrm{up}, \exp }^{0}=1.96 \sigma_{s}
$$

$\rightarrow \pm$ no bands:

$$
S_{\mathrm{up}, \mathrm{exp}}^{ \pm n}=\left(\pm n+\left[1-\Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}
$$

n	$S_{\text {exp }}{ }^{ \pm n} / \sqrt{\text { B }}$
+2	3.66
+1	2.72
0	1.96
-1	1.41
-2	1.05

CLs :

- Positive bands somewhat reduced,
- Negative ones more so

Band width from $\sigma_{s, A}^{2}=\frac{S^{2}}{\boldsymbol{q}_{s}(\text { Asimov })}$
depends on S, for non-Gaussian cases,different values for each band...

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

- LEP: Simple LR with NPs from MC

$$
\begin{aligned}
q_{L E P} & =-2 \log \frac{L(\mu=0, \widetilde{\theta})}{L(\mu=1, \widetilde{\theta})} \\
q_{\text {Tevarron }} & =-2 \log \frac{L\left(\mu=0, \hat{\hat{\theta}_{0}}\right)}{L\left(\mu=1, \hat{\hat{\theta}_{1}}\right)}
\end{aligned}
$$

- Compare $\mu=0$ and $\mu=1$
- Tevatron: PLR with profiled NPs

Both compare to $\boldsymbol{\mu}=\mathbf{1}$ instead of best-fit $\hat{\boldsymbol{\mu}}$

LEP/Tevatron LHC

\rightarrow Asymptotically:

- LEP/Tevaton: q linear in $\mu \Rightarrow \sim$ Gaussian
- LHC: q quadratic in $\mu \Rightarrow \sim \chi 2$
\rightarrow Still use TeVatron-style for discrete cases

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution :
$\left\{P_{i}\right\}$ for $i=0,1,2$
Properties

- $P_{i}>0$

- $\quad \sum P_{i}=1$

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution :
$\left\{P_{i}\right\}$ for $i=0,1,2$
Properties

- $P_{i}>0$
- $\quad \Sigma P_{i}=1$

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution :
$\left\{P_{i}\right\}$ for $i=0,1,2$
Properties

- $P_{i}>0$
- $\quad \sum P_{i}=1$

100 trials

Probability Distributions

Probabilistic treatment of possible outcomes
\Rightarrow Probability Distribution

Example: two-coin toss
\rightarrow Fractions of events in each bin i converge to a limit p_{i}

Probability distribution :
$\left\{P_{i}\right\}$ for $i=0,1,2$
Properties

- $P_{i}>0$
- $\quad \Sigma P_{i}=1$

100000 trials

Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities $p_{i}, i=1 . . n_{b i n s}$
5 bins

Bin size $\rightarrow 0$:
Probability distribution function $P(x)$
\rightarrow High values \Leftrightarrow high chance to get a measurement here

$$
P(x)>0, \int P(x) d x=1
$$

Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities $p_{i}, i=1 . . n_{b i n s}$

50 bins

Bin size $\rightarrow 0$:
Probability distribution function $P(x)$
\rightarrow High values \Leftrightarrow high chance to get a measurement here

$$
P(x)>0, \int P(x) d x=1
$$

Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities $p_{i}, i=1 . . n_{b i n s}$

500 bins

Bin size $\rightarrow 0$:
Probability distribution function $P(x)$
\rightarrow High values \Leftrightarrow high chance to get a measurement here

$$
P(x)>0, \int P(x) d x=1
$$

Random Variables

$\mathrm{X}, \mathrm{Y} .$. are Random Variables (continuous or discrete), aka. observables :
$\rightarrow X$ can take any value x, with probability $P(X=x)$.
$\rightarrow P(X)$ is the PDF of X, a.k.a. the Statistical Model.
\rightarrow The Observed data is one value $x_{\text {obs }}$ of X, drawn from $P(X)$.

500 bins

y

PDF Properties: Mean

$E(X)=\langle X\rangle$: Mean of X - expected outcome on average over many measurements

$$
\langle\boldsymbol{X}\rangle=\sum \boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{P}_{\boldsymbol{i}} \quad \text { or }
$$

\rightarrow Property of the PंDF

$$
\langle X\rangle=\int x P(x) d x
$$

For measurements $x_{1} \ldots x_{n}$, then can compute the Sample mean:
\rightarrow Property of the sample
\rightarrow approximates $\frac{1}{n} \sum_{i} \boldsymbol{X}_{\boldsymbol{i}}$

PDF Mean

PDF Mean Sample Mean

PDF Properties: (Co)variance

Variance of X :

$$
\operatorname{Var}(\boldsymbol{X})=\left\langle(\boldsymbol{X}-\langle\boldsymbol{X}\rangle)^{2}\right\rangle
$$

\rightarrow Average square of deviation from mean
$\rightarrow \mathrm{RMS}(\mathrm{X})=\sqrt{ } \operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{x}}$ standard deviation
Can be approximated by sample variance:

Covariance of X and Y :

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

\rightarrow Large if variations of X and Y are "synchronized"

$$
\operatorname{Cov}(X, Y)=\langle(X-\langle X\rangle)(\boldsymbol{Y}-\langle\boldsymbol{Y}\rangle)\rangle
$$

Correlation coefficient

$$
\begin{equation*}
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \quad-1 \leq \rho \leq 1 \tag{77}
\end{equation*}
$$

PDF Properties: (Co)variance

Variance of X :

$$
\operatorname{Var}(X)=\left\langle(X-\langle X\rangle)^{2}\right\rangle
$$

\rightarrow Average square of deviation from mean
$\rightarrow \mathrm{RMS}(\mathrm{X})=\sqrt{ } \operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{x}}$ standard deviation
Can be approximated by sample variance:

Covariance of X and Y :

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

\rightarrow Large if variations of X and Y are "synchronized"

$$
\operatorname{Cov}(X, Y)=\langle(X-\langle X\rangle)(\boldsymbol{Y}-\langle\boldsymbol{Y}\rangle)\rangle
$$

Correlation coefficient

$$
\begin{equation*}
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \quad-1 \leq \rho \leq 1 \tag{77}
\end{equation*}
$$

PDF Properties: (Co)variance

Variance of X :

$$
\operatorname{Var}(X)=\left\langle(X-\langle X\rangle)^{2}\right\rangle
$$

\rightarrow Average square of deviation from mean
$\rightarrow \mathrm{RMS}(\mathrm{X})=\sqrt{ } \operatorname{Var}(\mathrm{X})=\sigma_{\mathrm{x}}$ standard deviation
Can be approximated by sample variance:

Covariance of X and Y :

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

\rightarrow Large if variations of X and Y are "synchronized"

$$
\operatorname{Cov}(X, Y)=\langle(X-\langle X\rangle)(\boldsymbol{Y}-\langle\boldsymbol{Y}\rangle)\rangle
$$

Correlation coefficient

$$
\begin{equation*}
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \quad-1 \leq \rho \leq 1 \tag{77}
\end{equation*}
$$

＂Linear＂vs．＂non－linear＂correlations

For non－Gaussian cases，the Correlation coefficient ρ is not the whole story：

ρ	1	0.8	0.4	0	－0．4	－0．8	－1
ρ	1	1	1		－1	－1	－1
			－	．－．－	－	X	$\quad \tan 2 \alpha=\frac{2 \rho \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}-\sigma_{2}^{2}}$
ρ	0	0	0	0	0	0	0
							縭潮 W变变

Source：Wikipedia
In particular，variables can still be correlated even when $\rho=0$ ：＂Non－linear＂correlations．

Gaussian PDF

Gaussian distribution:

$\rightarrow \operatorname{Med}\left(\mathrm{X}:, X_{0}^{X_{0}}, \sigma\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(x-X_{0}\right)^{2}}{2 \sigma^{2}}}$
\rightarrow Variance : $\sigma^{2}(\Rightarrow$ RMS $=\sigma)$

Generalize to \mathbf{N} dimensions:
\rightarrow Mean : X
\rightarrow Covariance matrix :

$$
\begin{gathered}
G\left(x ; X_{0}, C\right)=\frac{1}{\left[(2 \pi)^{N}|C|\right]^{1 / 2}} e^{-\frac{1}{2}\left(x-X_{0}\right)^{T} C^{-1}\left(x-x_{0}\right)} \\
x_{2}{ }^{15}\left[W \left\lvert\, W(W) W W=\frac{2 \rho \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}-\sigma_{2}^{2}}\right.\right.
\end{gathered}
$$

$$
\begin{aligned}
C & =\left[\begin{array}{ll}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]
\end{aligned}
$$

Gaussian Quantiles

$P\left(\left|x-x_{0}\right|>Z \sigma\right)$

Consider $\quad z=\left(\frac{x-x_{0}}{\sigma}\right) \quad$ "pull" of x
2
0.317
0.045
0.003
$G\left(x ; x_{0}, \sigma\right)$ depends only on $z \sim G(z ; 0,1)$

Probability $\mathrm{P}\left(\left|\mathrm{X}-\mathrm{x}_{0}\right|>\mathrm{Z} \mathrm{\sigma}\right)$ to be away from the mean:

Gaussian Cumulative Distribution Function (CDF) :

$$
\Phi(z)=\int_{-\infty}^{z} G(u ; 0,1) d u
$$

Gaussian Quantiles

Z	$P\left(\left\|X-x_{0}\right\|>Z \sigma\right)$
1	0.317
2	0.045
3	0.003
4	3×10^{-5}
5	6×10^{-7}

Probability $\mathrm{P}\left(\left|\mathrm{X}-\mathrm{x}_{0}\right|>\mathrm{Z} \mathrm{\sigma}\right)$ to be away from the mean:

Gaussian Cumulative Distribution Function (CDF) :

Gaussian Quantiles

$P\left(\left|x-x_{0}\right|>Z \sigma\right)$

Consider $\quad z=\left(\frac{x-x_{0}}{\sigma}\right) \quad$ "pull" of x $G\left(x ; x_{0}, \sigma\right)$ depends only on $z \sim G(z ; 0,1)$

Probability $\mathrm{P}\left(\left|\mathrm{X}-\mathrm{x}_{0}\right|>\mathrm{Z} \mathrm{\sigma}\right)$ to be away from the mean:

Gaussian Cumulative Distribution Function (CDF) :

Central Limit Theorem

(*) Assuming $\sigma_{x}<\infty$ and other regularity conditions

For an observable X with any distribution, one has(${ }^{*}$)
What this means: $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \stackrel{n \rightarrow \infty}{\sim} G\left(\langle X\rangle, \frac{\sigma_{X}}{\sqrt{n}}\right)$

- The average of many measurements is always Gaussian, whateVer the distribution for a single measurement
- The mean of the Gaussian is the average of the single measurements
- The RMS of the Gaussian decreases as $\sqrt{ } \mathrm{n}$: smaller fluctuations when averaging over many measurements

Another version:

Mean scales like n, but RMS only like $\sqrt{ } n$

$$
\sum_{i=1}^{n} x_{i} \stackrel{n \rightarrow \infty}{\sim} G\left(n\langle X\rangle, \sqrt{n} \sigma_{X}\right)
$$

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

$$
\mathrm{n}=12
$$

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Central Limit Theorem in action

Draw events from a parabolic distribution (e.g. decay $\cos \theta^{*}$)

Distribution becomes Gaussian, although very non-Gaussian originally Distribution becomes narrower as expected (as $1 / \sqrt{ } n$)

Chi-squared

Multiple Independent Gaussian variables x_{i} : Define

$$
\chi^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}-x_{i}^{0}}{\sigma_{i}}\right)^{2}
$$

Measures global distance from reference point ($\mathrm{x}_{1}{ }^{0} \ldots . . \mathrm{x}_{\mathrm{n}}{ }^{0}$)

Distribution depends on n :

Rule of thumb:
χ^{2} / n should be $\mathfrak{\Sigma} 1$

Chi-squared

Multiple Independent Gaussian variables x_{i} : Define

$$
\left.\chi^{2}=\sum_{i=1}^{n} \left\lvert\, \frac{x_{i}-x_{i}^{0}}{\sigma_{i}}\right.\right)^{2}
$$

Measures global distance from reference point ($\mathrm{x}_{1}{ }^{0} \ldots . . \mathrm{x}_{\mathrm{n}}{ }^{0}$)

Distribution depends on n :

Rule of thumb:
χ^{2} / n should be $\mathfrak{1}$

Histogram Chi-squared

Histogram X2 with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) - (number of fit parameters)

BLUE histogram vs. flat reference $\mathrm{X}^{2}=12.9, \mathrm{P}\left(\mathrm{X}^{2}=12.9, \mathrm{n}=10\right)=23 \%$

Histogram Chi-squared

Histogram X2 with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) - (number of fit parameters)

BLUE histogram vs. flat reference $X^{2}=12.9, ~ \mathrm{P}\left(\mathrm{X}^{2}=12.9, \mathrm{n}=10\right)=23 \%$

RED histogram vs. flat reference $\mathrm{X}^{2}=38.8, \mathrm{P}\left(\mathrm{X}^{2}=38.8, \mathrm{n}=10\right)=0.003 \% \mathrm{X}$

Histogram Chi-squared

Histogram X2 with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) - (number of fit parameters)

BLUE histogram vs. flat reference $X^{2}=12.9, ~ P\left(X^{2}=12.9, n=10\right)=23 \%$

RED histogram vs. flat reference $X^{2}=38.8, ~ P\left(X^{2}=38.8, n=10\right)=0.003 \% X$

RED histogram vs. correct reference $x^{2}=9.5, p(x 2=9.5, n=10)=49 \%$

Error Bars

Strictly speaking, the uncertainty is given by the model :
\rightarrow Bin central value ~ mean of the bin PDF
\rightarrow Bin uncertainty \sim RMS of the bin PDF
The data is just what it is, a simple observed point.
\Rightarrow One should in principle show the error bar on the prediction.
\rightarrow In practice, the usual convention is to have error bars on the data points.

Error Bars

Strictly speaking, the uncertainty is given by the model:
\rightarrow Bin central value \sim mean of the bin PDF
\rightarrow Bin uncertainty \sim RMS of the bin PDF
The data is just what it is, a simple observed point.
\Rightarrow One should in principle show the error bar on the prediction.
\rightarrow In practice, the usual convention is to have error bars on the data points.

