PSI Zuoz Summer School 2022

Statistics

Nicolas Berger (LAPP Annecy)

PSI Zuoz Summer School 2022

Statistics **Eor Physicists**

Nicolas Berger (LAPP Annecy)

Lecture Plan

Statistics basic concepts (Today)

[Basic ingredients (PDFs, etc.)]

Parameter estimation (maximum likelihood, least-squares, ...)

Model testing (χ^2 tests, hypothesis testing, p-values, ...)

Computing statistical results (Today/Tomorrow)

Discovery Confidence intervals Upper limits Systematics and profiling [Bayesian techniques]

The class will be based on both lectures and hands-on tutorial

Hands-on sessions

The hands-on session will be based on Jupyter notebooks built using the **numpy/scipy/pyplot** stack.

If you have a computer with you, **please install** anaconda before the start of the class. This provides a consistent installation of python, JupyterLab, etc.

 \rightarrow Alternatively, you can also install JupyterLab as a standalone package.

 \rightarrow Another solution is to run the notebooks on the public jupyter servers at mybinder.org. This will probably be slower but avoids a local install.

Warmup		notebook [solutions]	binder [solutions]
Lecture 1	Lecture Notes	notebook	binder
Lecture 2	Lecture notes	notebook	binder

The **warmup** item includes material that will not be covered in detail in the class, as well as an introduction to the notebooks. Please have a look before the beginning of the classes if you are unfamiliar with this.

Statistics are everywhere

"There are three types of lies - lies, damn lies, and statistics." – Benjamin Disraeli

And Physics ?

"If your experiment needs statistics, you ought to have done a better experiment" – E. Rutherford

Introduction

Statistical methods play a critical role in many areas of physics

GeV

Data

Background ZZ(*)

Background Z+jets, tt

ATLAS

 $H \rightarrow ZZ^{(^*)} \rightarrow 4I$

Introduction

Sometimes difficult to distinguish a bona fide discovery from a **background fluctuation**...

Introduction

Sometimes difficult to distinguish a bona fide discovery from a **background fluctuation**...

Randomness in High-Energy Physics

Experimental data is produced by incredibly complex processes

Randomness in High-Energy Physics

Randomness involved in all stages

- \rightarrow **Classical** randomness: detector reponse
- \rightarrow Quantum effects in particle production, decay

Hard scattering

PDFs, Parton shower, Pileup

More details in Anna Sfyrla's lectures!

Decays

Detector response

Reconstruction

Example: measuring the energy of a photon in a calorimeter

Example: measuring the energy of a photon in a calorimeter

Example: measuring the energy of a photon in a calorimeter

Cannot predict the measured value for a given event

⇒ Random process ⇒ Need a probabilistic description

Quantum Randomness: H→ZZ*→4l

Quantum Randomness: H→ZZ*→4l

Rare process: Expect 1 signal event every ~6 days

http://www.phdcomics.com/comics/archive.php?comicid=1489

View online

Quantum Randomness: H→ZZ*→4l

"Will I get an event today ?" \rightarrow only **probabilistic** answer

Statistical Modeling

Probabilistic treatment of possible outcomes ⇒ **Probability Distribution**

Example: two-coin toss

 \rightarrow Fractions of events in each bin i converge to a limit p_i

Probability distribution :

 $\{P_i\}$ for i = 0, 1, 2

Properties

- P_i > 0
- Σ P_i=1

Probabilistic treatment of possible outcomes ⇒ **Probability Distribution**

Example: two-coin toss

 \rightarrow Fractions of events in each bin i converge to a limit p_i

Probability distribution :

{ P_i } for i = 0, 1, 2

Properties

- P_i > 0
- Σ P_i=1

Probabilistic treatment of possible outcomes ⇒ **Probability Distribution**

Example: two-coin toss

 \rightarrow Fractions of events in each bin i converge to a limit p_i

Probability distribution :

{ P_i } for i = 0, 1, 2

Properties

- P_i > 0
- Σ P_i=1

Probabilistic treatment of possible outcomes ⇒ Probability Distribution

Example: two-coin toss

→ Fractions of events in each bin i converge to a limit p_i

Probability distribution :

{ P_i } for i = 0, 1, 2

Properties

- P_i > 0
- Σ P_i=1

Continuous Variables: PDFs

Continuous variable: can consider **per-bin** probabilities p_i, i=1.. n_{bins}

Generalizes to **multiple variables** : $P(x,y) > 0, \int P(x,y) dx dy = 1$

Contours: P(x,y)

Bin size \rightarrow 0 : **Probability distribution function P(x)**

High PDF value

 \Rightarrow High chance to get a measurement here

P(x) > 0, $\int P(x) dx = 1$

Continuous Variables: PDFs

Continuous variable: can consider **per-bin** probabilities p_i, i=1.. n_{bins}

Generalizes to **multiple variables** : $P(x,y) > 0, \int P(x,y) dx dy = 1$

Contours: P(x,y)

Bin size \rightarrow 0 : **Probability distribution function P(x)**

High PDF value

 \Rightarrow High chance to get a measurement here

P(x) > 0, $\int P(x) dx = 1$

Continuous Variables: PDFs

Continuous variable: can consider **per-bin** probabilities p_i, i=1.. n_{bins}

Generalizes to **multiple variables** : $P(x,y) > 0, \int P(x,y) dx dy = 1$

Contours: P(x,y)

Bin size \rightarrow 0 : **Probability distribution function P(x)**

High PDF value

 \Rightarrow High chance to get a measurement here

P(x) > 0, $\int P(x) dx = 1$

Random Variables

X, Y... are **Random Variables** (continuous or discrete), a.ka. **observables** : \rightarrow X can take any value x, with probability **P(X=x)**.

 \rightarrow P(X=x) is the **PDF** of X, a.k.a. the **Statistical Model**.

→ The **Observed data** is **one value** x_{obs} of X, drawn from P(X=x).

PDF Properties: Mean

E(X) = <X> : Mean of X – expected outcome on average over many measurements

$$\langle X \rangle = \sum_{i} x_{i} P_{i}$$
 or
 $\langle X \rangle = \int x P(x) dx$

 \rightarrow Property of the **PDF**

For measurements $x_1 \dots x_n$, then can compute the **Sample mean**:

$$\bar{x} = \frac{1}{n} \sum_{i} x_{i}$$

- \rightarrow Property of the sample
- \rightarrow approximates the PDF mean.

PDF Properties: (Co)variance

Variance of X:

$$\operatorname{Var}(X) = \langle (X - \langle X \rangle)^2 \rangle$$

- → Average square of deviation from mean → RMS(X) = $\sqrt{Var(X)} = \sigma_x$ standard deviation
- Can be approximated by **sample variance**:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$$

Covariance of X and Y:

$$\operatorname{Cov}(X,Y) = \langle (X - \langle X \rangle) (Y - \langle Y \rangle) \rangle$$

 \rightarrow Large if variations of X and Y are "synchronized"

Correlation coefficient

$$\mathbf{b} = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

PDF Properties: (Co)variance

Variance of X:

$$\operatorname{Var}(X) = \langle (X - \langle X \rangle)^2 \rangle$$

- → Average square of deviation from mean → RMS(X) = $\sqrt{Var(X)} = \sigma_x$ standard deviation
- Can be approximated by **sample variance**:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$$

Covariance of X and Y:

$$\operatorname{Cov}(X,Y) = \langle (X - \langle X \rangle) (Y - \langle Y \rangle) \rangle$$

 \rightarrow Large if variations of X and Y are "synchronized"

Correlation coefficient

$$o = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

PDF Properties: (Co)variance

Variance of X:

$$\operatorname{Var}(X) = \langle (X - \langle X \rangle)^2 \rangle$$

- → Average square of deviation from mean → RMS(X) = $\sqrt{Var(X)} = \sigma_x$ standard deviation
- Can be approximated by **sample variance**:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$$

Covariance of X and Y:

$$\operatorname{Cov}(X,Y) = \langle (X - \langle X \rangle) (Y - \langle Y \rangle) \rangle$$

 \rightarrow Large if variations of X and Y are "synchronized"

Correlation coefficient

$$\mathbf{b} = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

"Linear" vs. "non-linear" correlations

For non-Gaussian cases, the **Correlation coefficient p** is not the whole story:

Source: Wikipedia

In particular, variables can still be correlated even when $\rho=0$: "Non-linear" correlations.

Gaussian PDF

Gaussian distribution:

$$G(x; X_0, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-X_0)^2}{2\sigma^2}}$$

- → Mean : X_0 → Variance : σ^2 (⇒ RMS = σ)
- Generalize to N dimensions: \rightarrow Mean : X_0
- → Covariance matrix :

$$C = \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) \end{bmatrix}$$
$$= \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

Gaussian Quantiles

Consider

$$z = \left(\frac{x - x_0}{\sigma}\right) \quad \text{``pull'' of x}$$

 $G(x;x_0,\sigma)$ depends only on $z \sim G(z; 0, 1)$

Probability $P(|x - x_0| > Z\sigma)$ to be away from the mean:

Gaussian Cumulative Distribution Function (CDF) :

$$\Phi(z) = \int_{-\infty}^{z} G(u; 0, 1) \, du$$

Z	$P(x - x_0 > Z\sigma)$
1	0.317
2	0.045
3	0.003
4	3 x 10 ⁻⁵
5	6 x 10 ⁻⁷

P(|x - x₀| < 1♂) = 68.3 %

Gaussian Quantiles

Consider

$$z = \left(\frac{x - x_0}{\sigma}\right) \quad \text{``pull'' of x}$$

 $G(x;x_0,\sigma)$ depends only on $z \sim G(z; 0, 1)$

Probability $P(|x - x_0| > Z\sigma)$ to be away from the mean:

$$\Phi(z) = \int_{-\infty}^{z} G(u; 0, 1) \, du$$

P(|x - x₀| < 2♂) = 95.4 % 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 1 -3 -2 -1 0 2 3 42**3**
Gaussian Quantiles

Consider

$$z = \left(\frac{x - x_0}{\sigma}\right) \quad \text{``pull'' of x}$$

 $G(x;x_0,\sigma)$ depends only on $z \sim G(z; 0, 1)$

Probability $P(|x - x_0| > Z\sigma)$ to be away from the mean:

Gaussian Cumulative Distribution Function (CDF) :

$$\Phi(z) = \int_{-\infty}^{z} G(u; 0, 1) \, du$$

Central Limit Theorem

(*) Assuming $\sigma_x < \infty$ and other regularity conditions

For an observable X with **any**^(*) **distribution**, one has

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \stackrel{n \to \infty}{\sim} G(\langle X \rangle, \frac{\sigma_X}{\sqrt{n}})$$

What this means:

- The average of many measurements is always Gaussian, whatever the distribution for a single measurement
- The mean of the Gaussian is the average of the single measurements
- The **RMS** of the Gaussian **decreases as** √**n** : smaller fluctuations when averaging over many measurements

Another version:

$$\sum_{i=1}^{n} x_{i} \stackrel{n \to \infty}{\sim} G(n \langle X \rangle, \sqrt{n} \sigma_{X})$$

Mean scales like n, but RMS only like \sqrt{n}

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Chi-squared

Multiple Independent Gaussian variables x_i: Define

$$\chi^2 = \sum_{i=1}^n \left(\frac{x_i - x_i^0}{\sigma_i} \right)^2$$

Measures global distance from reference point $(x_1^{0} \dots x_n^{0})$

Distribution depends on n :

Rule of thumb:

 χ^2/n should be $\preceq 1$

Chi-squared

Multiple Independent Gaussian variables x_i: Define

$$\chi^2 = \sum_{i=1}^n \left(\frac{x_i - x_i^0}{\sigma_i} \right)^2$$

Measures global distance from reference point $(x_1^{0} \dots x_n^{0})$

Distribution depends on n :

Rule of thumb:

 χ^2/n should be $\preceq 1$

Histogram Chi-squared

Histogram χ 2 with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) (number of fit parameters)

BLUE histogram vs. flat reference $\chi^2 = 12.9$, $p(\chi^2=12.9, n=10) = 23\%$

Histogram Chi-squared

Histogram $\chi 2$ with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) (number of fit parameters)

BLUE histogram vs. flat reference $\chi^2 = 12.9$, $p(\chi^2=12.9, n=10) = 23\%$ RED histogram vs. flat reference $\chi^2 = 38.8$, $p(\chi^2=38.8, n=10) = 0.003\%$

27

Histogram Chi-squared

Histogram $\chi 2$ with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) (number of fit parameters)

BLUE histogram vs. flat reference $\chi^2 = 12.9$, $p(\chi^2=12.9, n=10) = 23\%$ RED histogram vs. flat reference $\chi^2 = 38.8$, $p(\chi^2=38.8, n=10) = 0.003\%$ RED histogram vs. correct reference $\chi^2 = 9.5$, $p(\chi^2=9.5, n=10) = 49\%$

Error Bars

Strictly speaking, *the uncertainty is given by the model* :

- \rightarrow **Bin central value** ~ mean of the bin PDF
- \rightarrow **Bin uncertainty** ~ RMS of the bin PDF

The data is just what it is, a simple observed point.

⇒ One should in principle **show the error bar on the prediction**.

 \rightarrow In practice, the usual convention is to have error bars on the data points.

Error Bars

Strictly speaking, *the uncertainty is given by the model* :

- \rightarrow **Bin central value** ~ mean of the bin PDF
- \rightarrow **Bin uncertainty** ~ RMS of the bin PDF

The data is just what it is, a simple observed point.

⇒ One should in principle **show the error bar on the prediction**.

 \rightarrow In practice, the usual convention is to have error bars on the data points.

Statistical Modeling

Example 1: Z counting

Measure the cross-section (event rate) of the $Z \rightarrow$ ee process

$\sigma^{\text{fid}} = 0.781 \pm 0.004 \text{ (stat)} \pm 0.018 \text{ (syst) nb}$

Fluctuations in the data counts

Other uncertainties (assumptions, parameter values)

"Single bin counting" : only data input is n_{data}.

Example 2: ttH→bb

arXiv:2111.06712

Event counting in different regions: *Multiple-bin counting*

Lots of information available

- \rightarrow Potentially higher sensitivity
- \rightarrow How to make optimal use of it ?

Example 3: unbinned modeling

All modeling done using continuous distributions:

$$P_{\text{total}}(m_{\gamma\gamma}) = \frac{S}{S+B} P_{\text{signal}}(m_{\gamma\gamma}; m_H) + \frac{B}{S+B} P_{\text{bkg}}(m_{\gamma\gamma})$$

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- \rightarrow *i.e.* **very rare** process, but **very many trials** so still expect to see good events

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- \rightarrow *i.e.* **very rare** process, but **very many trials** so still expect to see good events

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- \rightarrow *i.e.* **very rare** process, but **very many trials** so still expect to see good events

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- \rightarrow *i.e.* **very rare** process, but **very many trials** so still expect to see good events

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- \rightarrow *i.e.* **very rare** process, but **very many trials** so still expect to see good events

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- \rightarrow *i.e.* **very rare** process, but **very many trials** so still expect to see good events

Statistical Model for Counting

Observable: number of events n

Typically both Signal and Background present:

$$P(n; S, B) = e^{-(S+B)} \frac{(S+B)^n}{n!}$$

Model has **parameters S** and **B**.

B can be known a priori or not (S usually not...)

 \rightarrow Example: **assume B is known**, use **measured n** to find out about **S**.

Multiple counting bins

Shapes f typically obtained from simulated events (*Monte Carlo*)

 \rightarrow HEP: typically excellent modeling from simulation, although some uncertainties need to be accounted for.

However not always possible to generate sufficiently large MC samples MC stat fluctuations can create artefacts, especially for $S \ll B$.

Model Parameters

Model typically includes:

• Parameters of interest (POIs) : what we want to measure

 \rightarrow S, m_w, ...

• Nuisance parameters (NPs) : other parameters needed to define the model

 \rightarrow Background levels (B)

 \rightarrow For binned data, f^{sig} , f^{bkg}

NPs must be either:

- → Known a priori (within uncertainties) or
- \rightarrow Constrained by the data

Takeaways

Random data must be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(\mathbf{n}; \mathbf{S}, \mathbf{B}) = e^{-(\mathbf{S} + \mathbf{B})} \frac{(\mathbf{S} + \mathbf{B})^{\mathbf{n}}}{\mathbf{n}!}$
Binned shape analysis	n _i , i = 1 N _{bins}	Poisson product $P(\mathbf{n}_{i}; \mathbf{S}, \mathbf{B}) = \prod_{i=1}^{n_{\text{bins}}} e^{-(\mathbf{S} f_{i}^{\text{sig}} + \mathbf{B} f_{i}^{\text{bkg}})} \frac{(\mathbf{S} f_{i}^{\text{sig}} + \mathbf{B} f_{i}^{\text{bkg}})^{\mathbf{n}_{i}}}{\mathbf{n}_{i}!}$
Unbinned shape analysis	m _i , i = 1 n _{evts}	Extended Unbinned Likelihood $P(\boldsymbol{m_i}; \boldsymbol{S}, \boldsymbol{B}) = \frac{e^{-(\boldsymbol{S} + \boldsymbol{B})}}{\boldsymbol{n_{\text{evts}}}!} \prod_{i=1}^{\boldsymbol{n_{\text{evts}}}} \boldsymbol{S} P_{\text{sig}}(\boldsymbol{m_i}) + \boldsymbol{B} P_{\text{bkg}}(\boldsymbol{m_i})$

Model can include multiple **categories**, each with a separate description Includes **parameters of interest** (POIs) but also **nuisance parameters** (NPs) **Next step**: use the model to obtain information on the POIs

Hypothesis Testing and discovery

Discovery Testing

We see an unexpected feature in our data, is it a signal for new physics or a fluctuation ?

e.g. Higgs discovery : **"We have 5σ" !**

GeV

Events/5 (02 02

15

10

Data

///// Syst.Unc.

Background ZZ(*)

_√s = 7 TeV:∫Ldt = 4.8 fb⁻¹

√s = 8 TeV: ∫Ldt = 5.8 fb⁻¹

Background Z+jets, tt Signal (m_=125 GeV) ATLAS

 $H \rightarrow ZZ^{(*)} \rightarrow 4I$

Discovery Testing

Say we have a Gaussian measurement with a background **B=100**, and we measure **n=120**

Did we just discover something ? *Maybe :-)* (but not very likely)

The measured signal is S = 20. $S = n_{obs} - B$

Uncertainty on B is $\sqrt{B} = 10$ \Rightarrow Significance Z = 2 \Rightarrow we are $\sim 2\sigma$ away from S=0.

Gaussian quantiles :

Z = 2 happens $p_0 \sim 2.3\%$ of the time if S=0

 $p_0 = 1 - \Phi(Z)$

 \Rightarrow Rare, but not exceptional

$$Z = \frac{S}{\sqrt{B}}$$

$$= \frac{S}{\sqrt{B}}$$

$$= 0$$

$$B = 100$$

$$B = 100$$

$$h$$

$$\Phi(Z) = \int_{-\infty}^{Z} G(u; 0, 1) du$$

Obs: 120

Discovery Testing

n

Straightf	р _о	Z	S	n _{obs}
Need to	31%	0.5σ	5	105
more co	16%	1σ	10	110
Fvidence	2.3%	2σ	20	120
Discovery	0.1%	3σ	30	130

Straightforward in this Gaussian case Need to be able to do the same in more complex cases: • Determine S

• Compute Z and p₀ 41 /

Maximum Likelihood Estimation
What a PDF is for

Model describes the distribution of the observable: P(data; parameters) ⇒ Possible outcomes of the experiment, for given parameter values Can draw random events according to PDF : generate pseudo-data

What a PDF is also for: Likelihood

Model describes the distribution of the observable: P(data; parameters) ⇒ Possible outcomes of the experiment, for given parameter values We want the other direction: use data to get information on parameters

Likelihood: L(parameters) = P(data; parameters)

 \rightarrow same as the PDF, but seen as function of the parameters

Maximum Likelihood Estimation

To estimate a parameter μ , find the value $\hat{\mu}$ that maximizes L(μ)

Maximum Likelihood Estimator (MLE) **û**:

$$\hat{\mathbf{L}} = arg max L(\boldsymbol{\mu})$$

MLE: the value of μ for which **this data** was **most likely to occur The MLE is a function of the data** – itself an **observable** *No guarantee* it is the true value (data may be "unlikely") but sensible estimate

45 /

Gaussian case

Best-fit of Gaussian PDF mean to observed data

Gaussian case

Best-fit of Gaussian PDF mean to observed data

46 /

Gaussian case

Best-fit of Gaussian PDF mean to observed data

46 /

-2 log Likelihood:

$$\lambda(\mu) = -2 \log L(\mu) = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{n_i - \mu_i}{\sigma_i}\right)^2$$

However typically need to perform non-linear minimization in other cases.

- MINUIT (C++ library within ROOT, numerical gradient descent)
- **scipy.minimize** using NumPy/TensorFlow/PyTorch/... backends
 - \rightarrow Many algorithms gradient-based, etc.

-2 log Likelihood:

$$\lambda(\mu) = -2 \log L(\mu) = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{n_i - \mu_i}{\sigma_i} \right)^2$$

However typically need to perform non-linear minimization in other cases.

- MINUIT (C++ library within ROOT, numerical gradient descent)
- **scipy.minimize** using NumPy/TensorFlow/PyTorch/... backends
 - \rightarrow Many algorithms gradient-based, etc.

-2 log Likelihood:

$$\lambda(\mu) = -2 \log L(\mu) = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{n_i - \mu_i}{\sigma_i} \right)^2$$

However typically need to perform non-linear minimization in other cases.

- MINUIT (C++ library within ROOT, numerical gradient descent)
- **scipy.minimize** using NumPy/TensorFlow/PyTorch/... backends
 - \rightarrow Many algorithms gradient-based, etc.

-2 log Likelihood:

$$\lambda(\mu) = -2 \log L(\mu) = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{n_i - \mu_i}{\sigma_i} \right)^2$$

However typically need to perform non-linear minimization in other cases.

- MINUIT (C++ library within ROOT, numerical gradient descent)
- **scipy.minimize** using NumPy/TensorFlow/PyTorch/... backends
 - \rightarrow Many algorithms gradient-based, etc.

Hypothesis Testing

Null Hypothesis: assumption on POIs, say value of S (e.g. H₀ : S=0)

 \rightarrow Goal : decide if H₀ is favored or disfavored using a test based on the data

Possible outcomes:	Data disfavors H _o (Discovery claim)			Data favors H _o (Nothing found)	
H _o is false (New physics!)	Discovery!			Missed discovery	
H _o is true (Nothing new)	False discovery			No new physics, None found	Image: second

"... the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation. Every experiment may be said to exist only to give the facts a chance of disproving the null hypothesis." – R. A. Fisher

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H_o: S=0)

	Data disfavor (Discovery cla	s H _o aim)	Data favors H _o (Nothing found)	
H ₀ is false (New physics!)	Discovery!		Type-II error (Missed discovery)	
H _₀ is true (Nothing new)	Type-I error (False discovery)		No new physics, none found	
	Ĺ	— n-valu	e significance	

Lower Type-I errors ⇔ **Higher Type-II errors** and vice versa: cannot have everything!

 \rightarrow Goal: test that minimizes Type-II errors for a given level of Type-I error.

ROC Curves

more powerful Better discriminators "Receiver operating characteristic" (ROC) Curve: ිස \rightarrow Shows Type-I vs Type-II rates for different selections Better ε_{Type-I} (= \rightarrow All curves monotonically decrease from (0,1) to (1,0) \rightarrow Better discriminators more bent • towards (1,1) 0 $1 - \varepsilon_{\text{Type-II}} (= \varepsilon_{\text{S}})$ 0.4 S = 0**BSM** \rightarrow **Goal**: test that minimizes Type-II 0.35 0.3 0.25 0.2 Type-I error 0.15 Type-I<mark>/</mark> Error p-value 0.1 0.05 0<u></u>5 5 50 2 -3 -2 0 3 4 _4 -1 Discriminant observable

Increasingly

errors for given level of Type-I error.

 \rightarrow Usually set predefined level of acceptable Type-I error (e.g. "5 σ ")

ROC Curves

more powerful Better discriminators "Receiver operating characteristic" (ROC) Curve: ිස \rightarrow Shows Type-I vs Type-II rates for different selections Better ε_{Type-I} (= \rightarrow All curves monotonically decrease from (0,1) to (1,0) \rightarrow Better discriminators more bent • towards (1,1) 0 $1 - \varepsilon_{\text{Type-II}} (= \varepsilon_{\text{S}})$ 0.4 S = 0**BSM** \rightarrow **Goal**: test that minimizes Type-II 0.35 0.3 errors for given level of Type-I error. 0.25 0.2 Type-I error 0.15 Type-I/ Error p-value 0 \rightarrow Usually set predefined level of 0.05 acceptable Type-I error (e.g. "5 σ ") 50 -3 -2 0 2 3 -1 4 5 Discriminant observable

Increasingly

ROC Curves

more powerful Better discriminators "Receiver operating characteristic" (ROC) Curve: ිස \rightarrow Shows Type-I vs Type-II rates for different selections Better ε_{Type-I} (= \rightarrow All curves monotonically decrease from (0,1) to (1,0) \rightarrow Better discriminators more bent _ towards (1,1) 0 $1 - \varepsilon_{\text{Type-II}} (= \varepsilon_{\text{S}})$ 0.4 S = 0**BSM** \rightarrow **Goal**: test that minimizes Type-II 0.35 0.3 errors for given level of Type-I error. 0.25 0.2 Type-I error 0.15 Type-I/ Error p-value 0 \rightarrow Usually set predefined level of 0.05 acceptable Type-I error (e.g. "5 σ ") 50 -3 -2 0 2 3 4 5

/

Discriminant observable

Increasingly

Discovery Testing

n

St	р _о	Z	S	n _{obs}
Ne	31%	0.5σ	5	105
m	16%	1σ	10	110
) Fvi	2.3%	2σ	20	120
Dis	0.1%	3σ	30	130

Straightforward in this Gaussian case Need to be able to do the same in more complex cases: • Determine S

- Compute Z and P₀51

Testing for Evidence in Gaussian counting

52 /

Testing for Evidence in Gaussian counting

52 /

Neyman-Pearson Lemma

When comparing two hypotheses H_0 and H_1 , the

optimal discriminator is the Likelihood ratio (LR)

$$\frac{L(S = 5; data)}{L(S = 0; data)}$$

e.g.

Caveat: Strictly true only for *simple hypotheses* (no free parameters)

As for MLE, choose the hypothesis that is more likely given the data we have.

- \rightarrow Always need an **alternate hypothesis** to test against the **null**.
- \rightarrow **Minimizes Type-II uncertainties** for given level of Type-I uncertainties

 \rightarrow In the following: all tests based on LR, will focus on p-values (Type-I errors), trusting that Type-II errors are anyway as small as they can be...

$$\frac{L(\mathbf{H}_{1}; data)}{L(\mathbf{H}_{0}; data)}$$

53

Discovery: Test Statistic

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011

Discovery:

- H₀: background only (S = 0) against
- H₁: presence of a signal (S > 0)

 \rightarrow For H₁, any S > 0 is possible, which to use ? The one preferred by the data, \hat{S} .

⇒ Use Likelihood ratio:

$$\frac{L(S=0)}{L(\hat{S})}$$

 \rightarrow In fact use the **test statistic** $q_0 = -2\log \frac{L(S=0)}{L(\hat{S})}$

Note: for $\hat{S} < 0$, set $q_0 = 0$ to reject negative signals ("one-sided test statistic") $\frac{54}{7}$

Discovery p-value

Large values of
$$-2 \log \frac{L(S=0)}{L(\hat{S})}$$
 if:

 \Rightarrow observed \hat{S} is far from 0

$$\Rightarrow$$
 H₀(S=0) disfavored compared to H₁(S≠0).

 \Rightarrow Large \hat{S} !

Compute *p-value* in the tail of the distribution

to exclude H_o (... and claim a discovery!)

Need to know $f(q_0 | S=0)$, the distribution of the test statistic...

Asymptotic distribution of q₀

Gaussian regime for \hat{S} (e.g. large n_{evts} , Central-limit theorem) :

Wilk's Theorem: q_0 distributed as χ^2 (n_{par}) for S = 0

$$\Rightarrow$$
 n_{par} = 1 : $\sqrt{q_0}$ is distributed as a Gaussian

⇒ Can compute p-values from Gaussian quantiles

 $p_0 = 1 - \Phi(\sqrt{q_0})$

 \Rightarrow Even more simply, the significance is:

 $Z=\sqrt{q_0}$

Typically works well already for for event counts of O(5) and above \Rightarrow Widely applicable

(*) 1-line "proof": asymptotically L and S are Gaussian, so $L(S) = \exp\left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^2\right] \Rightarrow q_0 = \left(\frac{\hat{S}}{\sigma}\right)^2 \Rightarrow \sqrt{q_0} = \frac{\hat{S}}{\sigma} \sim G(0,1) \Rightarrow q_0 \sim \chi^2(n_{dof}=1)$

Homework 1: Gaussian Counting

Count number of events n in data

- \rightarrow Assume n large enough so process is Gaussian
- \rightarrow Assume B is known, and we measure S

Likelihood:
$$L(S; n_{obs}) = e^{-\frac{1}{2} \left(\frac{n_{obs} - (S+B)}{\sqrt{S+B}} \right)^2}$$

- → Find the best-fit value (MLE) \hat{S} for the signal (can use λ = -2 log L instead of L for simplicity)
- \rightarrow Find the expression of q_0 for $\hat{S} > 0$.
- \rightarrow Find the expression for the significance

Homework 2: Poisson Counting

Same problem but now *not* assuming Gaussian behavior:

$$L(S;n) = e^{-(S+B)}(S+B)^n$$

 \rightarrow As before, compute \hat{S} , and q_0

(Can remove the n! constant since we're only dealing with L ratios)

 \rightarrow Compute Z = $\sqrt{q_0}$, assuming asymptotic behavior

Solution:

$$Z = \sqrt{2 \left[(\hat{S} + B) \log \left| 1 + \frac{\hat{S}}{B} \right| - \hat{S} \right]}$$

Exact result can be obtained using

pseudo-experiments \rightarrow close to $\sqrt{q_0}$ result

Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of S+B (down to 5 events!)

Discovery Thresholds

Evidence : $3\sigma \Leftrightarrow p_0 = 0.3\% \Leftrightarrow 1$ chance in 300

Discovery: $5\sigma \Leftrightarrow p_0 = 3 \ 10^{-7} \Leftrightarrow 1 \ \text{chance in } 3.5\text{M}$

Why so high thresholds ? (from Louis Lyons):

 Look-elsewhere effect: searches typically cover multiple independent regions ⇒ Higher chance to have a fluctuation "somewhere"

 $N_{trials} \sim 1000 : local 5\sigma \Leftrightarrow O(10^{-4})$ more reasonable

 Mismodeled systematics: factor 2 error in syst-dominated analysis ⇒ factor 2 error on Z...

• **History**: 3σ and 4σ excesses do occur regularly, for the reasons above

Extraordinary claims require extraordinary evidence!

Extra Slides

Rare Processes ?

HEP : almost always use Poisson

distributions. Why?

ATLAS :

• Event rate ~ 1 GHz

(L~10³⁴ cm⁻²s⁻¹~10 nb⁻¹/s, σ_{tot} ~10⁸ nb,)

Trigger rate ~ 1 kHz

(Higgs rate ~ 0.1 Hz)

⇒ p ~ 10⁻⁶ ≪ 1 (p_{H→γγ} ~ 10⁻¹³)

A day of data: N ~ $10^{14} \gg 1$

⇒ Poisson regime! Similarly true in many other physics situations.

(Large N = design requirement, to get not-too-small λ =Np...)

Unbinned Shape Analysis

Observable: set of values $m_1 \dots m_n$, one per event

- \rightarrow Describe shape of the **distribution of m**
- \rightarrow Deduce the **probability to observe m**₁... m_n

Vormalized events per GeV

0.25

0.2

0.15

0.1

0.05

m

110 120

130

140

150

160

Signal

Assume Poisson distribution with B = 0: $P(n; S) = e^{-S} \frac{S^n}{n!}$ Say we observe n=5, want to infer information on the parameter S

- \rightarrow Try different values of S for a fixed data value n=5
- \rightarrow Varying parameter, fixed data: **likelihood**

$$L(S; n=5) = e^{-S} \frac{S^5}{5!}$$

Say we **observe n=5**, want to infer information on the parameter $s^n = e^{-s} \frac{S^n}{n!}$ \rightarrow Try different values of S for a fixed data use

- \rightarrow Varying parameter, fixed data: **likelihood**

Say we **observe n=5**, want to infer information on the parameter $s^n = e^{-s} \frac{S^n}{n!}$ \rightarrow Try different values of S for a fixed data we

- \rightarrow Varying parameter, fixed data: **likelihood**

Say we **observe n=5**, want to infer information on the parameter $s^n = e^{-s} \frac{S^n}{n!}$ \rightarrow Try different values of S for a fixed data we

- \rightarrow Varying parameter, fixed data: **likelihood**

63

Say we **observe n=5**, want to infer information on the parameter $s^n = e^{-s} \frac{S^n}{n!}$ \rightarrow Try different values of S for a fixed data we

- \rightarrow Varying parameter, fixed data: **likelihood**

MLEs in Shape Analyses

Binned shape analysis:

$$L(\mathbf{S};\mathbf{n}_i) = P(\mathbf{n}_i;\mathbf{S}) = \prod_{i=1}^{N} \operatorname{Pois}(\mathbf{n}_i;\mathbf{S}f_i + B_i)$$

λT

Maximize global L(S) (each bin may prefer a different **S**) In practice easier to minimize

$$\lambda_{\text{Pois}}(\mathbf{S}) = -2\log L(\mathbf{S}) = -2\sum_{i=1}^{N} \log \text{Pois}(\mathbf{n}_i; \mathbf{S}f_i + B_i) \qquad \text{Needs a computer}$$

In the Gaussian limit

$$\lambda_{\text{Gaus}}(\mathbf{S}) = \sum_{i=1}^{N} -2\log G(\mathbf{n}_i; \mathbf{S}f_i + B_i, \sigma_i) = \sum_{i=1}^{N} \left| \frac{\mathbf{n}_i - (\mathbf{S}f_i + B_i)}{\sigma_i} \right|^2 \quad \chi^2 \text{ formula}$$

→ Gaussian MLE (min χ^2 or min λ_{Gaus}) : Best fit value in a χ^2 (Least-squares) fit → Poisson MLE (min λ_{Pois}) : Best fit value in a likelihood fit (in ROOT, fit option "L") In RooFit, λ_{Pois} ⇒ RooAbsPdf::fitTo(), λ_{Gaus} ⇒ RooAbsPdf::chi2FitTo().

In both cases, MLE ⇔ Best Fit

Classification BDT output

Н→үү

65

MLE Properties

• Asymptotically Gaussian $P(\hat{\mu}) \propto \exp\left(-\frac{(\hat{\mu}-\mu^*)^2}{2\sigma_{\hat{\mu}}^2}\right)$ for $n \rightarrow \infty$ and unbiased $\langle \hat{\mu} \rangle = \mu^*$ for $n \rightarrow \infty$ Standard deviation of the distribution of $\hat{\mu}$

for large enough datasets

- Asymptotically Efficient : σ_{μ} is the lowest possible value (in the limit $n \rightarrow \infty$) among consistent estimators.
 - \rightarrow MLE captures all the available information in the data
- Also **consistent**: $\hat{\mu}$ converges to the true value for large n,
- Log-likelihood : Can also minimize $\lambda = -2 \log L$
 - \rightarrow Usually more efficient numerically
 - \rightarrow For Gaussian L, λ is parabolic:
- Can drop multiplicative constants in L (additive constants in λ)

 $\hat{\mathbf{u}} \xrightarrow{n \to \infty} \mathbf{u}^*$
Extra: Fisher Information

Fisher Information:

$$I(\mu) = \left| \left(\frac{\partial}{\partial \mu} \log L(\mu) \right)^2 \right| = - \left| \frac{\partial^2}{\partial \mu^2} \log L(\mu) \right|^2$$

Measures the **amount of information** available in the measurement of μ .

For any estimator $\tilde{\mu}$.

- \rightarrow cannot be more precise than allowed by information in the measurement.
- **Efficient** estimators reach the bound : **e.g. MLE in the large dataset limit.**

Some Examples

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

High-mass $X \rightarrow \gamma \gamma$ Search: JHEP 09 (2016) 1

Upper Limit Pathologies

Upper limit:
$$S_{up} \sim \hat{S} + 1.64 \sigma_{s}$$

Problem: for negative Ŝ, get **very** good observed limit.

 \rightarrow For \hat{S} sufficiently negative, even $S_{up} < 0$!

How can this be ?

→ Background modeling issue ?... Or:

→ This is a 95% limit \Rightarrow 5% of the time, the limit wrongly excludes the true value, e.g. S*=0.

Options

 \rightarrow live with it: sometimes report limit < 0

 \rightarrow Special procedure to avoid these cases, since if we assume S must be >0, we know a priori this is just a fluctuation.

The usual p-value under Usual solution in HEP : **CL**. \boldsymbol{p}_{S_0} H(S=S₀) (=5%) p_{CL_s} – \rightarrow Compute modified p-value The p-value computed \Rightarrow **Rescale** exclusion at S₀ by exclusion at S=0. under H(S=0) \rightarrow Somewhat ad-hoc, but good properties... ц ц 95% limit, CL_{s+b} **Ŝ compatible with 0** : $p_{B} \sim O(1)$ 95% limit, CL $p_{CLs} \sim p_{so} \sim 5\%$, no change. **Far-negative** $\hat{\mathbf{S}}$: 1 - $p_{R} \ll 1$ $p_{Cls} \sim p_{S0} / (1-p_B) \gg 5\%$ \rightarrow lower exclusion \Rightarrow higher limit, σ_s = 1 usually >0 as desired

Drawback: overcoverage

 \rightarrow limit is claimed to be 95% CL, but actually >95% CL for small 1-p_B.

CL_s : Gaussian Bands

Usual Gaussian counting example with known B: 95% CL_s upper limit on S:

$$S_{up} = \hat{S} + \left[\Phi^{-1} \left(1 - 0.05 \Phi(\hat{S}/\sigma_s) \right) \right] \sigma_s$$

Compute expected bands for S=0:

→ Asimov dataset $\Leftrightarrow \hat{S} = 0$ → $\pm n\sigma$ bands:

$$S_{up,exp}^{0} = 1.96 \sigma_{s}$$

$$S_{up,exp}^{\pm n} = \left(\pm n + \left[1 - \Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}$$

CLs :

- Positive bands somewhat reduced,
- Negative ones more so

Band width from $\sigma_{s,A}^2 = \frac{S^2}{q_s(\text{Asimov})}$ depends on S, for non-Gaussian cases, different values for each band...

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

- **LEP**: Simple LR with NPs from MC
 - Compare μ =0 and μ =1
- **Tevatron**: PLR with profiled NPs

Both compare to $\mu=1$ instead of best-fit $\hat{\mu}$

 \rightarrow Asymptotically:

- **LEP/Tevaton**: q linear in $\mu \Rightarrow$ **~Gaussian**
- LHC: q quadratic in $\mu \Rightarrow -\chi 2$

 \rightarrow Still use TeVatron-style for discrete cases

$$q_{LEP} = -2\log\frac{L(\mu=0,\widetilde{\theta})}{L(\mu=1,\widetilde{\theta})}$$
$$q_{Tevatron} = -2\log\frac{L(\mu=0,\widehat{\theta}_0)}{L(\mu=1,\widehat{\theta}_1)}$$

Probabilistic treatment of possible outcomes ⇒ **Probability Distribution**

Example: two-coin toss

 \rightarrow Fractions of events in each bin i converge to a limit p_i

Probability distribution :

{ P_i } for i = 0, 1, 2

Properties

- P_i > 0
- Σ P_i=1

Probabilistic treatment of possible outcomes ⇒ Probability Distribution

Example: two-coin toss

 \rightarrow Fractions of events in each bin i converge to a limit p_i

Probability distribution :

 $\{P_i\}$ for i = 0, 1, 2

Properties

- P_i > 0
- Σ P_i=1

Probabilistic treatment of possible outcomes ⇒ Probability Distribution

Example: two-coin toss

 \rightarrow Fractions of events in each bin i converge to a limit p_i

Probability distribution :

 $\{P_i\}$ for i = 0, 1, 2

Properties

- P_i > 0
- Σ P_i=1

100 trials

Probabilistic treatment of possible outcomes ⇒ Probability Distribution

Example: two-coin toss

 \rightarrow Fractions of events in each bin i converge to a limit p_i

Probability distribution :

{ P_i } for i = 0, 1, 2

Properties

- P_i > 0
- Σ P_i=1

73

Continuous Variables: PDFs

Continuous variable: can consider **per-bin** probabilities p_i, i=1.. n_{bins}

Bin size \rightarrow 0 : **Probability distribution function P(x)** \rightarrow High values \Leftrightarrow high chance to get a measurement here

 $P(x) > 0, \int P(x) dx = 1$

Contours: P(x,y)

Continuous Variables: PDFs

Continuous variable: can consider **per-bin** probabilities p_i, i=1.. n_{bins}

Bin size \rightarrow 0 : **Probability distribution function P(x)** \rightarrow High values \Leftrightarrow high chance to get a measurement here

 $P(x) > 0, \int P(x) dx = 1$

Contours: P(x,y)

Continuous Variables: PDFs

Continuous variable: can consider **per-bin** probabilities p_i, i=1.. n_{bins}

Bin size \rightarrow 0 : **Probability distribution function P(x)** \rightarrow High values \Leftrightarrow high chance to get a measurement here

 $P(x) > 0, \int P(x) dx = 1$

Contours: P(x,y)

Random Variables

X, Y... are **Random Variables** (continuous or discrete), a.ka. **observables** : \rightarrow X can take any value x, with probability **P(X=x)**.

 \rightarrow P(X) is the **PDF** of X, a.k.a. the **Statistical Model**.

→ The **Observed data** is **one value** x_{obs} of X, drawn from P(X).

75

PDF Properties: Mean

E(X) = <X> : Mean of X – expected outcome on average over many measurements

$$\langle X \rangle = \sum_{i} x_{i} P_{i} \qquad \text{Or}$$

$$\Rightarrow \text{ Property of the } \dot{P} DF$$

$$\langle X \rangle = \int x P(x) dx$$

For measurements $x_1 \dots x_n$, then can compute the **Sample mean**:

PDF Mean

PDF Properties: (Co)variance

Variance of X:

$$\operatorname{Var}(X) = \langle (X - \langle X \rangle)^2 \rangle$$

→ Average square of deviation from mean → RMS(X) = $\sqrt{Var(X)} = \sigma_x$ standard deviation

Can be approximated by **sample variance**:

Covariance of X and Y:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$$

 \rightarrow Large if variations of X and Y are "synchronized"

$$\operatorname{Cov}(X,Y) = \langle (X - \langle X \rangle) (Y - \langle Y \rangle) \rangle$$

<u><</u> 1

$$\rho = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} \quad -1 \le \rho$$

PDF Properties: (Co)variance

Variance of X:

С

$$\operatorname{Var}(X) = \langle (X - \langle X \rangle)^2 \rangle$$

→ Average square of deviation from mean → RMS(X) = $\sqrt{Var(X)} = \sigma_x$ standard deviation

Can be approximated by **sample variance**:

Covariance of X and Y:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$$

 \rightarrow Large if variations of X and Y are "synchronized"

$$\operatorname{Cov}(X,Y) = \langle (X - \langle X \rangle) (Y - \langle Y \rangle) \rangle$$

77

orrelation coefficient
$$\rho = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}}$$
 $-1 \le \rho \le 1$

PDF Properties: (Co)variance

Variance of X:

С

$$\operatorname{Var}(X) = \langle (X - \langle X \rangle)^2 \rangle$$

→ Average square of deviation from mean → RMS(X) = $\sqrt{Var(X)} = \sigma_x$ standard deviation

Can be approximated by **sample variance**:

Covariance of X and Y:

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$$

 \rightarrow Large if variations of X and Y are "synchronized"

$$\operatorname{Cov}(X,Y) = \langle (X - \langle X \rangle) (Y - \langle Y \rangle) \rangle$$

orrelation coefficient
$$\rho = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}} \quad -1 \le \rho \le 1$$

"Linear" vs. "non-linear" correlations

For non-Gaussian cases, the **Correlation coefficient** ρ is not the whole story:

Source: Wikipedia

In particular, variables can still be correlated even when $\rho=0$: "*Non-linear"* correlations.

Gaussian PDF

Gaussian distribution:

$$\rightarrow Mea(\mathbf{n}^{X}; \mathbf{x}_{0}^{X}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x - X_{0})^{2}}{2\sigma^{2}}}$$

$$\rightarrow \text{Variance} : \sigma^{2} (\Rightarrow \text{RMS} = \sigma)$$

Generalize to N dimensions:

- \rightarrow Mean : X_o
- → Covariance matrix :

$$G(\mathbf{x}; \mathbf{X}_{0}, \mathbf{C}) = \frac{1}{[(2\pi)^{N} |\mathbf{C}|]^{1/2}} e^{-\frac{1}{2}(x - X_{0})^{T} \mathbf{C}^{-1}(x - X_{0})} \frac{1}{[(2\pi)^{N} |\mathbf{C}|]^{1/2}} e^{-\frac{1}{2}(x - X_{0})^{T} \mathbf{C}^{-1}(x - X_{0})} \frac{1}{\sigma_{1}^{2} - \sigma_{2}^{2}} \frac{1}{\sigma_{1}^{$$

$$C = \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) \end{bmatrix}$$
$$= \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

Gaussian Quantiles

Consider $z = \left(\frac{x - x_0}{\sigma}\right)$ "pull" of x

 $G(x;x_0,\sigma)$ depends only on $z \sim G(z; 0,1)$

Z $P(|x - x_0| > Z\sigma)$ 10.31720.04530.00343 x 10^{-5}56 x 10^{-7}

P(|x - x₀| < 1♂) = 68.3 % Probability $P(|x - x_0| > Z\sigma)$ to be away 0.4 from the mean: 0.35 0.3 Gaussian Cumulative Distribution Function (CDF) : 0.25 0.2 0.15 $\Phi(z) = \int_{-\infty}^{z} G(u; 0, 1) \, du$ 0.1 0.05 -3 -2 -1 0 2 3 1 4 8**ð**

Gaussian Quantiles

Consider $z = \left(\frac{x - x_0}{\sigma}\right)$ "pull" of x

 $G(x;x_0,\sigma)$ depends only on $z \sim G(z; 0,1)$

 $Z \qquad P(|x-x_0| > Z\sigma)$

P(|x - x₀| < 2♂) = 95.4 % Probability $P(|x - x_0| > Z\sigma)$ to be away 0.4 from the mean: 0.35 0.3 Gaussian Cumulative Distribution Function (CDF) : 0.25 0.2 0.15 $\Phi(z) = \int_{-\infty}^{z} G(u; 0, 1) \, du$ 0.1 0.05 -3 -2 -1 0 2 3 486 1

Gaussian Quantiles

Consider $z = \left(\frac{x - x_0}{\sigma}\right)$ "pull" of x

 $G(x;x_0,\sigma)$ depends only on $z \sim G(z; 0,1)$

 $Z \qquad P(|x-x_0| > Z\sigma)$

P(|x - x₀| < 3♂) = 99.7 % Probability $P(|x - x_0| > Z\sigma)$ to be away 0.4 from the mean: 0.35 0.3 Gaussian Cumulative Distribution Function (CDF) : 0.25 0.2 0.15 $\Phi(z) = \int_{-\infty}^{z} G(u; 0, 1) \, du$ 0.1 0.05 -3 -2 2 3 -1 0 1 480

Central Limit Theorem

(*) Assuming $\sigma_x < \infty$ and other regularity conditions

For an observable X with any distribution, one has(*)

What this means:

- hat this means: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i \stackrel{n \to \infty}{\sim} G(\langle X \rangle, \frac{\sigma_X}{\sqrt{n}})$ The average of many measurements is always Gaussian, whatever the distribution for a single measurement
- The mean of the Gaussian is the average of the single measurements
- The **RMS** of the Gaussian decreases as \sqrt{n} : smaller fluctuations when averaging over many measurements

Another version:

Mean scales like n, but RMS only like \sqrt{n}

$$\sum_{i=1}^{n} x_{i} \stackrel{n \to \infty}{\sim} G(n \langle X \rangle, \sqrt{n} \sigma_{X})$$

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

82

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

82

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

82

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)

Distribution becomes Gaussian, although very non-Gaussian originally **Distribution becomes narrower** as expected (as $1/\sqrt{n}$)

Chi-squared

Multiple Independent Gaussian variables x_i: Define

$$\chi^2 = \sum_{i=1}^n \left(\frac{x_i - x_i^0}{\sigma_i} \right)^2$$

Measures global distance from reference point $(x_1^0 \dots x_n^0)$

Distribution depends on n :

Rule of thumb:

 χ^2/n should be $\preceq 1$

Chi-squared

Multiple Independent Gaussian variables x_i: Define

$$\chi^2 = \sum_{i=1}^n \left(\frac{x_i - x_i^0}{\sigma_i} \right)^2$$

Measures global distance from reference point $(x_1^0 \dots x_n^0)$

Distribution depends on n :

Rule of thumb:

 χ^2/n should be $\preceq 1$

83

Histogram Chi-squared

Histogram χ^2 with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) (number of fit parameters)

BLUE histogram vs. flat reference $\chi^2 = 12.9$, $p(\chi^2=12.9, n=10) = 23\%$

Histogram Chi-squared

Histogram $\chi 2$ with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) (number of fit parameters)

BLUE histogram vs. flat reference $\chi^2 = 12.9$, $p(\chi^2=12.9, n=10) = 23\%$ RED histogram vs. flat reference

 $\chi^2 = 38.8$, $p(\chi^2 = 38.8$, n = 10) = 0.003%
Histogram Chi-squared

Histogram χ 2 with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) (number of fit parameters)

BLUE histogram vs. flat reference $\chi^2 = 12.9$, $p(\chi^2=12.9, n=10) = 23\%$ **RED histogram vs. flat reference** $\chi^2 = 38.8$, $p(\chi^2=38.8, n=10) = 0.003\%$ **RED histogram vs. correct reference** $\chi^2 = 9.5$, $p(\chi^2=9.5, n=10) = 49\%$

Error Bars

Strictly speaking, the uncertainty is given by the model :

- \rightarrow **Bin central value** ~ mean of the bin PDF
- \rightarrow **Bin uncertainty** ~ RMS of the bin PDF

The data is just what it is, a simple observed point.

- \Rightarrow One should in principle show the error bar on the prediction.
- \rightarrow In practice, the usual convention is to have error bars on the data points.

Error Bars

Strictly speaking, the uncertainty is given by the model :

- \rightarrow **Bin central value** ~ mean of the bin PDF
- → **Bin uncertainty** ~ RMS of the bin PDF

The data is just what it is, a simple observed point.

- \Rightarrow One should in principle **show the error bar on the prediction**.
- \rightarrow In practice, the usual convention is to have error bars on the data points.

