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What will this lecture be about?
2

Introduction
• Definitions and basic concepts

Input to the physics
• The data: trigger, data preparation
• The theory: Monte carlo simulations
• Reconstruction, or how to translate detector signals to particles

Physics analyses 
• Through example, step-by-step
• Discussion of analysis methods

Machine Learning in HEP
• Just a teaser!



PART 3



Reconstruction



Reconstruction – Figures of Merit 
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Definition Example Needs be:

how often do we 
reconstruct the 
object we are 
interested in

electron identification
efficiency = (number of 
reconstructed electrons) 
/ (number of true 
electrons) in bins of 
transverse momentum

how accurately do 
we reconstruct the 
quantity

energy resolution = 
(measured energy – true 
energy) / (true energy)

how often we 
reconstruct a 
different object as 
the object we are 
interested in

a jet faking an electron, 
fake rate = (Number of 
jets reconstructed as an 
electron) / (Number of 
jets) in bins of 
pseudorapidity
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What do we reconstruct?

Tracks and clusters

• Combining those: 
• “objects”, i.e. “particles”
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What do we reconstruct?
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Tracks and clusters

Combining those: 
• “objects”, i.e. “particles”



Electron reconstruction
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¥ Electron momentum measurement can 
come from tracking or calorimeter 
information (or a combination of both)
¥ Often have a final calibration to give the 

best electron energy

¥ Working points define categories
¥ E.g. loose, medium, tight
¥ Trade-off: Efficiency vs Fakes 

¥ Often want “isolated electrons”
¥ Require little calorimeter energy or tracks 

in the region around the electron



Electrons – Identification Algos
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Example of different calorimeter shower shape variables used to 
distinguish electron showers from jets in ATLAS

Information can be exploited 
using multi-variate
techniques such as 

likelihood discriminants 
or boosted decision trees 
or other machine learning 

methods. 



Muons
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¥ Combine the muon segments found in the muon detector with tracks from 
the tracking detector 

¥ Momentum of muon determined from bending due to magnetic field in 
tracker and in muon system

¥ Combine measurements to get 
best resolution

¥ Need an accurate map of magnetic 
field in the reconstruction software 

¥ Alignment of the muon detectors 
also very important to get best 
momentum resolution

Muon segment 
in drift tubes



jets
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21

Initial State 
Parton Shower

Final State 
Parton Shower

Signal Process

Underlying Event

Fragmentation

Hadronization
and Hadron Decays

Beam Remnants

Figure 2.3: Illustration of the complex picture of a hadron-hadron collision introduced in this
chapter (adapted from Ref. [80]).

In Chapters 9 and 10 these limitations will be addressed with a set of di↵erent Monte Carlo

simulations in the e↵ort of interpreting the measurements performed in this thesis in the

context of QCD.



Jet production processes
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Jets are produced:
¥ by fragmentation of gluons and 

(light) quarks in QCD scattering
¥ by decays of heavy Standard Model 

particles, e.g. W & Z
¥ in association with particle 

production in Vector Boson Fusion, 
e.g. Higgs

¥ in decays of beyond the Standard 
Model particles, e.g. in SUSY



Jets
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At low energy, jets are more likely 
produced by gluon fusion.



Jet Algorithms
• Theory requirements: infrared and collinear safe

• Experimental requirements: Independent to detector technology and data 
taking conditions, easily implementable

14

Soft gluon radiation 
should not merge jets

Final jet should not depend on 
the ordering of the seeds…

…and on signal split in two 
possibly below threshold

• Jet algorithm commonly used at the LHC: ‘anti-kt’. A 
‘recursive recombination’ algorithm. Starts from (topo-
)clusters. Hard stuff clusters with nearest neighbor. 
Various cone sizes (standard R=0.4/0.5, “fat” R=1.0).

arXiv: 0802.1189



Jet Calibration
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• Correct the energy and position 
measurement and the resolution. 
• Account for:

Physics effects
Algorithm efficiency
‘Pile-up’
‘Underlying event’

Instrumental effects
Detector inefficiencies 
‘Pile-up’
Electronic noise
Clustering, noise suppression
Dead material losses 
Detector response
Algorithm efficiency



Jets and Pile-Up
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Multiple interactions from pile-up

‘Jet-areas’ corrections
Inspired by arXiv:0707.1378



B-Jets
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¥b-hadrons have a lifetime of ~ 10-12 s.
¥They travel a small distance (fraction of mm) 

before decaying.
¥A “displaced vertex” creates a distinct jet, so 

b-jets can be tagged (b-tagged).
¥b-tagging uses sophisticated algorithms, 

mostly multi-variate (machine learning).

¥b-jets create distinct final states, important for 
both Standard Model measurements and 
searches for New Physics.
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Missing Transverse Momentum – MET
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In the transverse plane:

So for what we can’t directly measure (e.g. neutrinos)



Missing Transverse Momentum – MET
20

In the transverse plane:

So for what we can’t directly measure (e.g. neutrinos)

Dark 
Matter

or Dark Matter candidates!
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Particle flow
for hadronic Reconstruction



Particle flow
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Jet 



Particle flow
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Jet 



Particle flow
24

Jet 

π0

π+

π-

π0

2 tracks

4 EM clusters

2 HAD clusters

¥ “Flow of particles” through the 
detector.

¥ Reconstruct and identify all particles, 
photons, electrons,   pions, … 

¥ Use best combination of all sub-
detectors for measuring the properties 
of the particles.

¥ First used at LEP (ALEPH) and then at 
the LHC (CMS).



Jets in Pile-up
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Tracker

Calorimeter



Jets in Pile-up
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Tracker

Calorimeter

ü Requirement that particles originate 
from the primary vertex.



Momentum resolution
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Resolution: the quality with which we measure the jet momentum.
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Momentum resolution
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Resolution: the quality with which we measure the jet momentum.
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Momentum resolution
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Resolution: the quality with which we measure the jet momentum.

29



Momentum resolution
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Significant improvement for low-pT jets. Similar for MET.
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A comparison

¥PF jets (CMS) and calo jets (ATLAS) have similar performance.
¥Particle reconstruction always needs to be optimized depending 

on the detector technologies and experimental requirements.
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Online reconstruction

≈ ≈

Objective:  Trigger (“online”) reconstruction same as “offline”.
Problem:   Time. Trigger decision needs to be taken fast.
Solution:   Simplification.
Challenge: Clever simplification = good performance.

E.g. track reconstruction in regions of interest and simplified MET calculation.
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Reconstructing particles
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taus A tau jet (signal)…

…vs. a QCD jet (background)

Tau Decay Mode B.R.
Leptonic τ±à e± + ν + ν 17.8%

τ±à μ± + ν + ν 17.4%
Hadronic 1-prong τ±à π± + ν 11%

τ±à π± + ν + nπ0 35%
3-prong τ±à 3π± + ν 9%

τ±à 3π± + ν + nπ0 5%
Other ~5%

¥Hadronic tau reconstruction extremely challenging
¥Using multi-variate (machine learning) techniques 

based on track multiplicity and shower shapes

34



Top,W,Z

Diagrams from http://arxiv.org/pdf/1004.1181.pdf

Z0

q

q

e+/μ+/q

e-/μ-/q

35

Top / W decay Z decay



And the higgs!
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How about new particles?

• These decay to Standard Model particles or create MET

• E.g.
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LHC Physics

An analysis 
Step-by-Step



Measurements

Cross-section

Mass

Other 
properties

Searches

Bump

Tail

Physics analyses
39



Measurements

Cross-section

Mass

Other 
properties

Searches

Bump

Tail

Physics analyses
40

¥ Allow important 
tests of the 
consistency of the 
theory.

¥ Typically limited 
by systematic 
uncertainties.

¥ … For new particles.

¥ If no signal, set limits on 
some model. 

¥ If signal, a potential 
discovery!

¥ More data typically 
improve a search.

“Systematic” 
uncertainties are 

introduced by 
inaccuracies in the 
methods used to 

perform the 
measurement.



Simple example: 
Measuring the Z0 cross-section at LHC

41

¥Z0 boson decays to lepton or quark pairs
¥ We can reconstruct it in the e+e- or μ+μ- decay modes

¥Discovery and study of the Z0 boson was a critical part of  understanding          
the electroweak force.

¥And now, at the LHC?
¥ Important test of theory: does the measurement agree with the theoretical 

prediction at LHC collision energy?
¥ A standard candle for studying reconstruction and deriving calibrations.
¥ Can be used for luminosity determination!

Z0

q

q

e+/ μ+

e- / μ-



Measuring the Z0 cross-section at LHC
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Measuring the Z0 cross-section 
at LHC



Reconstructing Z0’s
44

- Identify Z decays using the invariant mass of the 2 leptons
M2 = (L1+L2)2 where Li = (Ei,pi) = 4-vector for lepton i

- Under assumption that lepton is massless compared to mass of Z0

=> M2 = 2 E1 E2 (1-cosϑ12)   where ϑ12= angle between the leptons

Step-2: Select Z0 events with ‘analysis cuts’:
- Events with 2 high momentum electrons or muons
- Require the electrons or muons are of opposite charge
- With di-lepton mass close to the Z0 mass 

(e.g. 70<ml+l-<110 GeV)

Very little background in Z0 mass region!

Z0

e+/ μ+

e- / μ-

Step-1: Identify the observable of interest



Reconstructing Z0’s
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- Identify Z decays using the invariant mass of the 2 leptons
M2 = (L1+L2)2 where Li = (Ei,pi) = 4-vector for lepton i

- Under assumption that lepton is massless compared to mass of Z0

=> M2 = 2 E1 E2 (1-cosϑ12)   where ϑ12= angle between the leptons

Step-2: Select Z0 events with ‘analysis cuts’:
- Events with 2 high momentum electrons or muons
- Require the electrons or muons are of opposite charge
- With di-lepton mass close to the Z0 mass 

(e.g. 70<ml+l-<110 GeV)

Very little background in Z0 mass region!

Z0

e+/ μ+

e- / μ-

Step-1: Identify the observable of interest
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http://www.nobelprize.org/nobel_prizes/physics/laureates/1984/rubbia-lecture.pdf

Two EM clusters with ET>25GeV.

As above plus a track with pT>7GeV 
pointing to the cluster. 
Hadronic and track isolation requirements 
applied.

A second cluster has also an isolated track.

Z->ee in UA1

A step back in time



Measuring Z0 cross-section
47

Cross-section calculated for:
¥ Specific production mechanism (pp, pp, e+e-)
¥ Centre-of-Mass of the collisions (7, 8, 13 TeV at LHC)

Experimentally

Theoretically

� · BR = Number of events
↵·✏·L

N of events: N of events on data – N of expected background events
α – acceptance: fraction of events passing selection requirements
ε – efficiency: reconstruction efficiency of relevant objects
L – luminosity 
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All numbers carry uncertainties –
both “statistical” and “systematic”!



Measuring Z0 cross-section
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Cross-section calculated for:
¥ Specific production mechanism (pp, pp, e+e-)
¥ Centre-of-Mass of the collisions (7, 8, 13 TeV at LHC)

Experimentally

Theoretically

� · BR = Number of events
↵·✏·L

N of events: N of events on data – N of expected background events
α – acceptance: fraction of events passing selection requirements
ε – efficiency: reconstruction efficiency of relevant objects
L – luminosity 

All numbers carry uncertainties –
both “statistical” and “systematic”!



Measuring Z0 cross-section
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Measuring 
W cross-section
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W±

q

q’

e± / μ±

ve
±

/ μ
±

MT
2 = 2 ET1 ET2 (1-cosϑ12) 

Available in the 
transverse plane only!
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Measuring W cross-section
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Electron and Muon channel 
agree within uncertainties Measurement consistent with 

prediction within uncertainties



Measuring cross-sections
52

*gZ/
fids / ±W

fids
9 9.5 10 10.5 11

 = 7 TeV)sData 2010 (
total uncertainty
exp. uncertainty

ABKM09
JR09
HERAPDF1.5
MSTW08

-1 L dt = 33-36 pbò
ATLAS

) [nb]-l+ l®*g BR(Z/× Z
tots

0.8 0.9 1

) [
nb

]
n l

®±
 B

R
(W

× ±
Wto

t
s

8

9

10

11

 = 7 TeV)sData 2010 (
MSTW08
HERAPDF1.5
ABKM09
JR09

total uncertainty
 accÅ sys Åsta 

uncertainty

68.3% CL ellipse area

-1 L dt = 33-36 pbò

ATLAS

) [nb]-l+ l®*g BR(Z/× Z
tots

0.8 0.9 1

) [
nb

]
n l

®±
 B

R
(W

× ±
Wto

t
s

8

9

10

11

 [nb]Ws
8 9 10 11 12 13 14

Electron channel

Muon channel

Combined

)n l ® W ®(pp s

Theory (NNLO)

ATLAS
-1 L dt = 310-315 nbò

 = 7 TeV)sData 2010 (

 [nb]*gZ/s
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Electron channel

Muon channel

Combined

 ll)®* g Z/®(pp s

Theory (NNLO)

ATLAS
-1 L dt = 316-331 nbò

 = 7 TeV)sData 2010 (

Ratios



Measuring cross-sections
53

*gZ/
fids / ±W

fids
9 9.5 10 10.5 11

 = 7 TeV)sData 2010 (
total uncertainty
exp. uncertainty

ABKM09
JR09
HERAPDF1.5
MSTW08

-1 L dt = 33-36 pbò
ATLAS

) [nb]-l+ l®*g BR(Z/× Z
tots

0.8 0.9 1

) [
nb

]
n l

®±
 B

R
(W

× ±
Wto

t
s

8

9

10

11

 = 7 TeV)sData 2010 (
MSTW08
HERAPDF1.5
ABKM09
JR09

total uncertainty
 accÅ sys Åsta 

uncertainty

68.3% CL ellipse area

-1 L dt = 33-36 pbò

ATLAS

) [nb]-l+ l®*g BR(Z/× Z
tots

0.8 0.9 1

) [
nb

]
n l

®±
 B

R
(W

× ±
Wto

t
s

8

9

10

11

 [nb]Ws
8 9 10 11 12 13 14

Electron channel

Muon channel

Combined

)n l ® W ®(pp s

Theory (NNLO)

ATLAS
-1 L dt = 310-315 nbò

 = 7 TeV)sData 2010 (

 [nb]*gZ/s
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Electron channel

Muon channel

Combined

 ll)®* g Z/®(pp s

Theory (NNLO)

ATLAS
-1 L dt = 316-331 nbò

 = 7 TeV)sData 2010 (

Ratios

General aim: 

find ways to reduce the uncertainties!



Analysis flow – e.g. cross-section measurement
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Physics Analysis

Compare theory and experiment

Physics Analysis

Reconstruct Electron and 
Muon candidates

Apply event selection:
1. Select events with 2 

oppositely charged 
Electrons/Muons

2. Calculate mass
3. Select events with 

mass close to Z mass

Detector & 
Trigger

Reconstruction

Simulated data

Reconstruction

Apply Good Run ListData Quality



Analysis flow – e.g. cross-section measurement
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Physics Analysis

Compare theory and experiment

Physics Analysis

Detector & 
Trigger

Reconstruction

Simulated data

Reconstruction

Data Quality
Centrally produced by 

the collaboration  

Produced by analysis 
teams, ranging in size 

(from a couple to many 
more)
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What’s out there? 

Discovered:            1960         1974   2014  1978                             1983 



Simple SEARCH example: 
Search for a heavy Z’

57

¥ Like Z->ee but at higher mass

Z→e+e-

Select 2 electron candidates and 
plot their invariant mass for: 
1. Data
2. Simulated

background events 
3. Simulated signal

with different masses

Data inconsistent with a 1TeV Z’

Cross-section decreases with mass
(higher the mass of the Z’, the more 
data needed to discover it)



Z→μ+μ-

Simple SEARCH example: 
Search for a heavy Z’
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¥ And similar for muons
Select 2 electron candidates and 
plot their invariant mass for: 
1. Data
2. Simulated

background events 
3. Simulated signal

with different masses

Data inconsistent with a 1TeV Z’

Cross-section decreases with mass
(higher the mass of the Z’, the more 
data needed to discover it)



A small comparison
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Differences in:
¥Resolution 
¥Background composition
¥Dataset

e+e- μ+μ-



Evolution…
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μ+μ-e+e-



searches
61



A well-known bump search
62
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Another SEARCH example: 
Search for SUSY in events with 
large jet multiplicities

66
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Disclaimer: 
This is only an example!
There are numerous such searches!
Each of them differs in 
• event selections, 
• background determinations, 
• methodology
Searching for new physics is fun!



From Raw Data to Physics
Instead of summary:



Components of 
an analysis
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¥ Data-set and Monte Carlo samples

¥ Trigger

¥ Object definitions and event selections

¥ Background determination

¥ Systematic uncertainties

¥ Statistical methods

¥ Results

¥ [Interpretations]

Components of a physics analysis



70

¥ Data-set and Monte Carlo samples

¥ Trigger

¥ Object definitions and event selections

¥ Background determination

¥ Systematic uncertainties

¥ Statistical methods

¥ Results

¥ [Interpretations]

The data and simulation samples used in the 
analysis. Data for the measurement / search, 
simulation to compare data to predictions. 

Data-set specifics:
¥Data quality ⇒ Good run list. 
¥Luminosity.

Monte Carlo sample specifics:
¥Generator, tunes.
¥Statistics.

Components of a physics analysis
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¥ Data-set and Monte Carlo samples

¥ Trigger

¥ Object definitions and event selections

¥ Background determination

¥ Systematic uncertainties

¥ Statistical methods

¥ Results

¥ [Interpretations]

The trigger used to collect the data with. 

Trigger specifics:
¥ Prescales; typically unprescaled triggers 

are used, prescaled triggers for QCD / 
high stat measurements.

¥ Trigger (in)efficiencies.

Components of a physics analysis
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¥ Data-set and Monte Carlo samples

¥ Trigger

¥ Object definitions and event selections

¥ Background determination

¥ Systematic uncertainties

¥ Statistical methods

¥ Results

¥ [Interpretations]

Components of a physics analysisThe exact definition of objects 
(electrons, muon, jets, …) and how 
these are combined in selecting 
events to be analyzed.

Object definition specifics:
¥ “Flavor” of the identification 

(loose, medium, tight).
¥ Calibrations.

Event selection specifics:
¥ Event cleaning (e.g. from noise and 

cosmics). 
¥ Momentum, geom. acceptance and 

multiplicity of objects. 
¥ Higher level cuts, such as invariant 

mass. 
¥ “Signal regions”.
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¥ Data-set and Monte Carlo samples

¥ Trigger

¥ Object definitions and event selections

¥ Background determination

¥ Systematic uncertainties

¥ Statistical methods

¥ Results

¥ [Interpretations]

Events that are imitating the 
signal we are searching for or 
measuring.

Background determination 
specifics:
¥ Can/must be data-driven or 

simulation-based.  
¥ “Validation regions” and 

“control regions” required. 
These can use different 
triggers wrt signal regions.

Components of a physics analysis
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¥ Data-set and Monte Carlo samples

¥ Trigger

¥ Object definitions and event selections

¥ Background determination

¥ Systematic uncertainties

¥ Statistical methods

¥ Results

¥ [Interpretations]

¥ Any ‘intermediate’ measurement we 
have performed carries uncertainties 
(statistical and systematic). 

¥ “Systematic” uncertainties are 
introduced by inaccuracies in the 
methods used to perform the 
measurement.

¥ Efficiencies, acceptance, number of 
events, luminosity, cross sections used 
in Monte Carlo scaling… 

¥ Some of them are “centrally” assessed 
by the performance groups of an 
experiment. Some of them are analysis-
specific.

Components of a physics analysis
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¥ Data-set and Monte Carlo samples

¥ Trigger

¥ Object definitions and event selections

¥ Background determination

¥ Systematic uncertainties

¥ Statistical methods

¥ Results

¥ [Interpretations]

Components of a physics analysisDealing with large data-sets, 
we use statistical methods to 
make sense of the numbers 
we measure.

Typical method:
¥ Do a fit to extract signal 

from background. 

Methodologies can vary a lot, 
but nowdays they are pretty 
unified within and across 
experiments.

Neural nets and other machine 
learning methods are broadly used, 
primarily to improve signal over 
background discrimination! 
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¥ Data-set and Monte Carlo samples

¥ Trigger

¥ Object definitions and event selections

¥ Background determination

¥ Systematic uncertainties

¥ Statistical methods

¥ Results

¥ [Interpretations]

Produce the results in 
tables and plots. These 
include details of what is 
found in the signal region. 

Components of a physics analysis
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¥ Data-set and Monte Carlo samples

¥ Trigger

¥ Object definitions and event selections

¥ Background determination

¥ Systematic uncertainties

¥ Statistical methods

¥ Results

¥ [Interpretations] Put the results into context: 
interpret them in theoretical models.

Components of a physics analysis



Machine Learning
how it is used in HEP

Just a teaser! 
The topic is broad and can easily be a long lecture itself!



What is Machine Learning?
“Giving computers the ability to learn without explicitly programming them”

(Arthur Samuel, 1959)
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1959 : Arthur Samuel uses the term “Machine Learning” 
for the first time when talking about his checkers program

1957 : Alex Bernsteil demonstrates use of 
IBM’s 704 computer AI playing chess against it



What is Machine Learning?
Let’s use a Neural Network (NN) as an example
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In simple words:
• NN: single-valued function (of weights and other parameters) of input values
• Training: optimization of that function on test sample (e.g. MC)

• The function “learns” the model
• Minimisation of an “error function” (e.g. χ2) to find optimized weights and parameters

• Inference: Use that optimized function on real data

Input vector x

h = f(w x + c)

o = f(W h + c)



Is it really that simple? 
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“Shalow” neural network “Deep” neural network

More hidden layers (deep networks) allow:
• Factorised learning of the structure of data
• Progressivelly learning more complex data sets

1

2

3

But…
• Very difficult to train
• Decades of research led to great advancements!
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Machine 
Learning

UNSupervised 
learning

Use unlabelled data to 
create predictive models, 
e.g. group together objects 
based on specific properties

Supervised 
learning

Use labelled training sets & 
data to “supervise” the 

algorithms figure out the 
information we are looking for

Reinforcement 
learning

Allow the algorithm to 
interact with the 
environment and get positive 
or negative rewards

Classification 
model

Predicts discrete values

Regression 
model

Predicts continuous values

Weather forecasting

Market forecasting

Estimating life expectancy

Image classification

Diagnostics

Fraud Detection

Traffic control

Game AI

Dimensionality reduction

Clustering



Machine Learning in HEP
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Efficiency and purity for the D0 MVA tagger, 
compared to the “conventional” one

• Used since very long (the 90’s, if not before)
• In the past: neural networks and other MVAs 

(e.g. BDTs). 
• Nowdays: More complicated and “deep” 

networks. CNNs, RNNs, GANs, … 
• Used in reconstruction

• Classic example: b-tagging, already at the 
Tevatron (since early 2000)

• Used in analyses, e.g. for s/b optimisations
• Historic example: discovery of single top at 

the Tevatron (2009)

• Higgs discovery made use of multiple MVAs



Machine Learning in HEP
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• Used since very long (the 90’s, if not before)
• In the past: neural networks and other MVAs 

(e.g. BDTs). 
• Nowdays: More complicated and “deep” 

networks. CNNs, RNNs, GANs, … 
• Used in reconstruction

• Classic example: b-tagging, already at the 
Tevatron (since early 2000)

• Used in analyses, e.g. for s/b optimisations
• Historic example: discovery of single top at 

the Tevatron (2009)

• Higgs discovery made use of multiple MVAs Discriminants at the CDF single-top discovery
(arXiv:0903.0885)



What CHALLENGES 
can M

L help
with?
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Huge 
amounts of 

data to 
process

Very 
complex 

data
Enormous 
number of 
events to 

generate and 
simulate

CPU 
intensive 

algorithms

Real time 
processing at 
huge rates

Especially at HL-LHC 
with PU 200

> 500 PB

E.g. tracking; 
bottlenecks both at 
the HLT and offline

100’s billions 
of events

E.g. overall HW trigger 
latency < 10 μsec and 
input rate 40 MHz



An event’s lifetime
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Detector Trigger

Signal

Relevant quantity

# 
ev

en
ts

Signal

Background

Theory / Simulations
Publication

Data analysis

Reconstruction Calibration2.5 μs ~0.3 s

Month(s) - Year(s)

Year(s)

Year(s)

Day(s) - Month(s)

Every 25 ns

Ra
w D

ata

For improved performance 
(e.g. b-tagging) and CPU 

needs (e.g. tracking).

Machine learning in HEP nowdays

To enable selections 
(e.g. tau) and reduce 
resource needs (e.g. 

anti-kT jet finding) 
(esp. in the future)

Most importantly to reduce 
CPU needs (e.g. tracking) 

(esp. in the future)

For improved 
performance (e.g. for jets)

Significant recent RnD both for 
generation and simulation

Rich (challenging) possibilities : 
S/B, taggers, new methods such as 

anomaly detection, …

Could be used at FE 
electronics in the future ?

1

2

3
4

5 6

7



Two examples from Flavour Tagging
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Flexible algorithm that requires no inputs from 
other tagging algorithms

2. Graph Neural Network
1. Deep Impact 
Parameter Sets (DIPS)

ATL-PHYS-PUB-2020-014

ATL-PHYS-PUB-2022-027



Machine learning in HEP nowdays

To efficiently use ML, we need to understand 
• the problem we want to solve
• How ML can help address a specific problem
• What ML algorithm / architecture to use

And then ML can be an extremely useful TOOL!
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https://xkcd.com/1838/



Good luck in your research! 
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Exciting Times coming up in HEP

Please get in touch for question, comments, 
or simply feedback on this lecture

anna.sfyrla@unige.ch


