

P. Schmidt-Wellenburg

Search for an electric dipole moment of the muon using a compact storage ring at PSI

Philipp Schmidt-Wellenburg (PSI) | LTP Seminar | 25.05.2020

CP violation & edm

Complementarity of EDM searches

Timmermans

ш

G

adapted from Rob

PAUL SCHERRER INSTITUT

EFT analysis of contributions to F2 and F3

$$\langle p' | J_{\mu}^{\text{EM}} | p \rangle = \overline{\Psi}(p') \left[F_{1} \gamma_{\mu} + \frac{iF_{2}}{2M} \sigma_{\mu\nu} q^{\nu} + \frac{iF_{3}}{2M} \sigma_{\mu\nu} \gamma_{5} q^{\nu} + \frac{F_{4}}{M^{2}} (q^{2} \gamma_{\mu} - \gamma^{\mu} q_{\mu} q_{\mu}) \right] \Psi(p)$$

$$\text{charge} \qquad \text{electric-dipole}$$

Effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} = c_R^{\ell_f \ell_i} \,\bar{\ell}_f \sigma_{\mu\nu} P_R \ell_i F^{\mu\nu} + \text{h.c.}$$

$$\delta F_{2} = -\frac{2m_{\ell_{i}}}{e} \left(c_{R}^{\ell_{i}\ell_{i}} + c_{R}^{\ell_{i}\ell_{i}*} \right) = -\frac{4m_{\ell_{i}}}{e} \operatorname{Re} c_{R}^{\ell_{i}\ell_{i}},$$

$$F_{3} = i \left(c_{R}^{\ell_{i}\ell_{i}} - c_{R}^{\ell_{i}\ell_{i}*} \right) = -2 \operatorname{Im} c_{R}^{\ell_{i}\ell_{i}},$$

General limits on μ EDM in flavor violating models

• EFT phase of Wilson parameter $c_R^{\mu\mu}$ hardly constraint

• μ EDM contribution in electron EDM allows for large value: $d_{\mu} \le 7.5 \times 10^{-19} e$ cm

A relativistic charged particle in a strong B-field

μ -spin precession in a \vec{B} and \vec{E} -field

7

 $\vec{\omega}_a$: spin precession in orbital plane, perpendicular to \vec{B} : "g-2" signal.

 $\vec{\omega}_{\eta}$: rotation out of precession plane: "EDM signal" η_d : is defined in analogy to magnetic moment:

$$d = \frac{\eta q \hbar}{4mc}$$

Frozen spin technique for the muon EDM

- Cancel anomalous precession
 - with matched E-field: $E \cong aBc\beta\gamma^2$
- Spin remains parallel on orbit
- No "contamination" from anomalous spin precession

 $s_z \propto \eta E^* \cdot t$

Farley

JPG37(2010)

mann

Adel

PRL93(2004)

Signal: asymmetry of upper to lower detector

- Up / down detector measure decay positrons
- Side detectors (not shown) measure a_{μ} precession to tune $E \cong aBc\beta\gamma^2$

37(2010)085001

et al. JPG

A. Adelmann

Possible scenarios

28 MeV/c, 1.5T, 0.07 m, 5ns

125 MeV/c, 1.5T, 0.28 m, 8ns

 $\sigma = 78 \times 10^{-22} \text{ecm}$

$$\sigma = 2 \times 10^{-22} \text{ecm}$$

 $\sigma = 5 \times 10^{-23} \text{ecm}$

Assuming $1/(\gamma \tau)$ detection rate

10

Injection

- Use weakly focusing magnet ¹/₂ integer resonance
- 20 turn resonant injection: slowly ramp down perturbator (200ns)
- Needs simulation
- Injection phase space measured for 125 MeV/c and 28MeV/c
- Need for trigger system
- Injection possible for 28MeV/c ?
- Recalculation under way

T. Takayamaet al, NIMB 24/25(1987)420

Prospects for compact μ -EDM at PSI

Apply frozen spin technique

- PSI μ E1: 2 × 10⁸ μ ⁺/s γ = 1.57
- Polarization from pion decay: P = 0.9
- Mean asymmetry of muon decay: $\alpha = 0.3$
- Compact conventional magnet:

$$B = 1.5 T \Rightarrow R = 0.28 \text{m}, E = 10 \text{MV/m}$$

$$\sigma(d_{\mu}) = \frac{\hbar a}{2E\tau .. \alpha P \sqrt{N}} = 1 \times 10^{-16} \frac{e \text{cm}}{\sqrt{N}}$$
• D
• D
• Ri
• Ri
 $\sigma(d_{\mu}) < 5 \times 10^{-23} e \text{cm}$
 $\sigma(d_{\mu}) < 5 \times 10^{-23} e \text{cm}$

Many interesting talks and discussion in break-out groups

List of invited speakers

- Nick Berger, University of Mainz
- Martin Fertl, University of Mainz
- Massimmo Giovannozzi, CERN
- Gavin Hesketh, University College London
- Kim-Siang Khaw, Tsung-Dao Lee Institute and Shanghai Jiao Tong University

ALICE

layers

- Alexander Nass, Forschungszentrum Jülich
- Nicola Neri, University of Milano
- François Meot, Brookhaven National Laboratory
- Angela Papa, University of Pisa
- Frank Rathmann, Forschungszentrum Jülich
- Peter Winter, Argonne National Lab

Proposal for a dedicated compact μ -EDM at PSI

- Weak focusing magnet
- Polarized μ —beam
- Trigger from beam telescope for start of inflector ramp (resonance ½ integer injection*)
- One muon at a time $\sim 200 \text{kHz}$ rate
- Tracking detector for positrons
- Optional calorimeter

Possible detector: Combination of scintillating tiles/fibers (timing) and thin MAPS (track, momentum)

muE1 @ 125MeV/c highest beam intensity

Horizontal Phase Space @SciFi

Highest rate measured: 5×10^{7} Hz Horizontal emittance: 2225mm · mrad (FWHM) Vertical emittance : 1686mm · mrad

Compare to " p_t of e^+ " – labbooks

- Highest rate: 3×10^{8} Hz
- Horizontal emittance: 176 to 2961 mm · mrad
- Vertical emittance : 912 to 4275 mm ⋅ mrad (Measured by displacement of beam profile monitor)

A. Adelmann et al: $28 \cdot 17 \text{ mm} \cdot \text{mrad} = 476 \text{ mm} \cdot \text{mrad}$

Philipp Schmidt-Wellenburg (PSI) | LTP Seminar | 25.05.2020

Inspiration by JPARC g-2 talk:

New idea during the muEDM workshop

- Use MRI magnet with high field uniformity (1 ppb/mm locally)
- Vertical injection
- Pions stop in solenoid

Active-Shi

Longitudinal drift velocity and tracker resolution

- Drift time $T = 4\gamma\tau$ for p = 125 MeV/c: $T \approx 12\mu$ s
- Vertical drift velocity $v_z = 125 \ \mu m/ns$
- Machine frequency 50 MHz "Natural" time resolution of 20ns results in required spatial resolution of 2.5mm

Divergent beam requires entrance trigger

• Several mrad divergence, e.g. $\rightarrow 125 \frac{\mu m}{ns} < v_{\parallel} < 500 \frac{\mu m}{ns}$

Continuous injection still desirable, needs trigger

- How to deal with "pile up"?
 - Current beam rates and phase space measurements make it seem unlikely that we get more than one muon every some 100 ns
 - But if you have two muons separated several 100 ns with different v_{\parallel} (first slow drift, second fast drift)?
 - \rightarrow calculate helix trajectory? \rightarrow position sensitive trigger?
 - \rightarrow what about multiple scattering on trigger?
 - \rightarrow beam time this year to measure multiple scattering.

T-BMT equation with vertical drift and frozen spin (only anomalous term)

$$\omega_a = \frac{e}{m} \left[a\vec{B} - \left(a - \frac{1}{1 + \gamma^2}\right)\vec{\beta} \times \frac{\vec{E}}{c} \right]$$

$$\omega_{a,x} = \frac{e}{m} \left[aB_{\theta} - \left(a - \frac{1}{1 + \gamma^2} \right) \zeta \frac{E}{c} \right]$$

For vertical drift $v_z/c = \zeta \ll \beta$

$$\vec{\beta} = \begin{pmatrix} \beta \\ 0 \\ \zeta \end{pmatrix}$$
 and $\vec{E} = \begin{pmatrix} 0 \\ E \\ 0 \end{pmatrix}$

and

$$E = \frac{aB_z\beta c}{1 - (1 + a)\beta^2}$$

Need to adjust with central current

$$B_{\theta} = \frac{E\left(1 - \frac{a}{1 + \gamma^2}\right)\zeta}{c} \approx 10 \text{ nT} \qquad \Longrightarrow \qquad \omega_{a,x} = 0$$

T-BMT equation with vertical drift and frozen spin (edm term)

$$\omega = \frac{\eta e}{2m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right]$$

$$\omega_y = \frac{\eta e}{2m} \left[(\zeta B_\theta - \beta B) + \frac{E}{c} \right]$$

For vertical drift $v_z/c = \zeta \ll \beta$

$$\vec{\beta} = \begin{pmatrix} \beta \\ 0 \\ \zeta \end{pmatrix}, \vec{E} = \begin{pmatrix} 0 \\ E \\ 0 \end{pmatrix} \text{ and } \vec{B} = \begin{pmatrix} B_{\theta} \\ 0 \\ B \end{pmatrix}$$

and

$$E = \frac{aB_z\beta c}{1 - (1 + a)\beta^2}$$

No change in "EDM-signal", negligible smaller amplitude.....

For
$$E = 10$$
 kV/cm and $\zeta = \frac{\beta}{1000} \rightarrow B_{\theta} = 10$ nT

The muon EDM workshop

- 37 participants
- 11 invited talks on:
 - Beam dynamics
 - Storage rings
 - EDM measurements
 - Detector technology

Output:

- New ideas
- List of action items
- Core muEDM project team
- Statement of interest to participate by several Groups

Philipp Schmidt-Wellenburg (PSI) | LTP Seminar | 25.05.2020

Many challenges (a incomplete collection)

• Injection

- Study resonant injection using a non-linear magnetic field perturbation
- Study vertical injection a la JPARC
- Injection trigger
 - Too short timing between detection of "suitable" muon and ramp of pertubator

• Detector

- High B-field, minimal spacing, access difficult, high heat load
- Minimal material budget (multiple scattering) / stop positrons in scintillator / calorimeter?

• Magnet

- Very good uniformity (<1ppm) because of systematic with vertical weak focusing
- Extreme uniformity (few ppb) for helix approach

• 3D Magnetic field characterization

– Measurement of field along orbit on 1uT at 1T (NMR /He3 ???)

Lets build a collaboration!

Interested and active partners: Geneva, Jülich, Liverpool, London, Mainz, Manchester, Pisa, Roma, Shanghai, ETHZ

Thank you for your attention

Thanks to all μ EDM aficionados:

A. Adelmann (PSI), M. Backhaus (ETHZ),
N. Berger (U. Mainz), A. Crivellin (PSI/ U. Zürich),
M. Daum (PSI), F. Focher (ETHZ),
K. Kirch (PSI/ETHZ), R. Khasanov (PSI),
A. Knecht (PSI), M. Meier (PSI),
A. Papa (PSI/ U. Pisa), A. Pratyush (ETHZ),
C. Petitjean (PSI), M. Sakurai (ETHZ),
K.-S. Khaw (SJTU)

