

The Cabibbo-Angle Anomaly (and $b \rightarrow s\ell^+\ell^-$)

Claudio Andrea Manzari

based on: <u>1912.08823</u> preliminary work of B.Capdevila, A.Crivellin, C.A.Manzari, M.Montull

University of Zurich^{uz#}

The CKM matrix

The unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix parametrize the misalignment between the up- and down-quark Yukawa couplings in the physical basis with diagonal mass matrices.

University of Zurich^{uz#}

The Anomaly

The Anomaly

There is a tension between the different determinations of $V_{\mu s}$

LFUV

Modified Neutrino Couplings

Minimal impact: we modify only the couplings of W and Z with neutrinos

- EW observables
- Low energy observables (K, π , τ , W decays)

There is 1 Operator which modifies only neutrino couplings :

PAUL SCHERRER INSTITUT

LFV Parameters

Non-diagonal elements of ϵ_{ij} lead to charged lepton flavour violation

$$Br[\mu \to e\gamma] \to |\epsilon_{e\mu}| \le 10^{-5}$$

$$Br[\tau \to \mu \gamma] \to |\epsilon_{\tau \mu}| \le 10^{-2}$$

$$\operatorname{Br}[\tau \to e\gamma] \to |\epsilon_{\tau e}| \le 10^{-2}$$

In flavour conserving processes do not interfere with the SM contributions, and enter only quadratically, therefore they are further suppressed.

Neglected in what follows

Parameters and Observables

Parameters and Observables

Low Energy Observables

These measurements together with the EW precision tests constraint the size of our parameters

$$\frac{\pi \to \mu\nu}{\pi \to e\nu} \sim \frac{\pi \to \mu\nu}{\pi \to e\nu} \bigg|_{\mathrm{SM}} (1 + \frac{1}{2}\epsilon_{\mu\mu} - \frac{1}{2}\epsilon_{ee}) \qquad \begin{cases} \frac{K \to \mu\nu}{K \to e\nu} & \frac{\tau \to \mu\nu}{\tau \to e\nu\nu} \\ \frac{K \to \pi\mu\nu}{W \to e\nu\nu} & \frac{W \to \mu\nu}{W \to e\nu} \\ \frac{\tau \to e\nu\nu}{\mu \to e\nu\nu} \sim \frac{\tau \to e\nu\nu}{\mu \to e\nu\nu} \bigg|_{\mathrm{SM}} (1 + \frac{1}{2}\epsilon_{\tau\tau} - \frac{1}{2}\epsilon_{\mu\mu}) & \begin{cases} \frac{\tau \to \pi\nu}{\pi \to \mu\nu} & \frac{\tau \to K\nu}{K \to \mu\nu} \\ \frac{W \to \tau\nu}{W \to \mu\nu} \\ \frac{W \to \tau\nu}{W \to \mu\nu} \end{cases}$$

A global fit to all the data is necessary!

Contributions to the Fit

Contributions to the global fit from each class of observables. 1σ and 2σ regions are shown in the ϵ_{ee} vs $\epsilon_{\mu\mu}$ plane, marginalising over $\epsilon_{\tau\tau}$.

University of

Vus

Combining CAA with $b \rightarrow s\ell\ell$

Many observables related to the flavour-changing neutral-current transition $b \rightarrow s\ell^+\ell^-$ exhibit deviations from SM expectations.

Due to their suppression in the SM, they have a high sensitivity to potential NP contributions.

To perform a global fit to all the data we work within the model-independent approach of the effective Hamiltonian:

$$H_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i O_i$$

$$O_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}\ell)$$
$$O_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell)$$

Z' and W'

Is there a correlation between the Cabibbo Angle Anomaly and $b \rightarrow s\ell\ell$?

Prompted by the Z', we can attempt to solve the CAA anomaly with a W'

The Vector Triplet Model

A new heavy Vector Triplet coupling to left-handed fermions provides an interesting solution

Deeper impact: modified W and Z couplings & direct effects from W and Z'

- EW observables
- Low energy observables (K, π , τ , W decays)
- $b \rightarrow s\ell\ell$

The Vector Triplet Model

$$\mathscr{L}_X^{\text{int}} = -g_{ji}^{\ell} X_a^{\mu} \bar{\ell}_j \gamma_{\mu} \frac{\sigma^a}{2} \ell_i - g_{ji}^q X_a^{\mu} \bar{q}_j \gamma_{\mu} \frac{\sigma^a}{2} q_i - \left(i g_X^{D\phi} X_a^{\mu} \phi^{\dagger} \frac{\sigma^a}{2} D_{\mu} \phi + \text{h.c.} \right)$$

NP Parameters :

EW Parameters :

 $g_{ee}^{\ell}, g_{\mu\mu}^{\ell}, g_{\tau\tau}^{\ell}, g^{q}, g_{X}^{D\phi}$

 G_F , α , M_Z

$$M_Z^{\exp} = M_Z^{\mathscr{L}} \sqrt{\left(1 - \frac{|g_X^{D\phi}|^2 v^2}{4M_X^2}\right)}$$

$$G_F^{\exp} = G_F^{\mathscr{L}} \left(1 + \frac{g_X^{D\phi}(g_{11}^{\ell} + g_{22}^{\ell})v^2}{2M_X^2} \right) + \frac{g_{11}^{\ell}g_{22}^{\ell}}{4\sqrt{2}M_X^2}$$

PAUL SCHERRER INSTITUT

_

EW+LFU+ V_{us}

PAUL SCHERRER INSTITUT

 $b \rightarrow s\ell\ell$

 $IC_{SM} \simeq 167.72$

 $IC_{NP} \simeq 102.25$

Conclusions (I)

- There is a tension in the determination of $V_{\mu s}$ from different processes
- It can be seen as an evidence of LFUV completing an already interesting picture
- We tried to solve the tension modifying the couplings of neutrinos with gauge bosons
- The global fit to EW, LFU and V_{us} prefers LFUV NP at more than 99% C.L.

Conclusions (II)

- We tried to solve the anomaly with a different tree-level effects, and the Vector Triplet model turned to be a good candidate
- With this simplified model, we are able to explain $b \to s \ell \ell$ and CAA simultaneously

This results are of notable importance for research at PSI, since they emphasise the need for precise tests of LFU

Example

 $R_{\mu/e}^{\pi, exp} = 1.0010 \pm 0.0009$ $R_{\mu/e}^{\pi, SM} = 1 \rightarrow R_{\mu/e}^{\pi} = 1.00173 \pm 0.00043$ PREDICTION WITH MODIFIED NEUTRINO COUPLINGS
Looking forward to see PEN results!!!

University of

Backup

University of Zurich^{uz#}

The Anomaly with NP

Modified Neutrino Couplings

Minimal impact: we modify only the couplings of W and Z with neutrinos

- EW observables
 - Low energy observables (K, π , τ , W decays)

There is 1 Operator which modifies only neutrino couplings :

$$\bar{L}_i \gamma_\mu \tau^I L_j H^\dagger i D_I^\mu H \quad \text{with} \quad \tau^I = (1, -\sigma_1, -\sigma_2, -\sigma_3)$$

$$\begin{aligned} &\frac{-ig_2}{\sqrt{2}}\bar{\mathscr{E}}_i\gamma^{\mu}P_L\nu_jW_{\mu} \Rightarrow \frac{-ig_2}{\sqrt{2}}\bar{\mathscr{E}}_i\gamma^{\mu}P_L\nu_jW_{\mu}\left(\delta_{ij}+\frac{1}{2}\varepsilon_{ij}\right) \\ &\frac{-ig_2}{2c_W}\bar{\nu}_i\gamma^{\mu}P_L\nu_jZ_{\mu} \Rightarrow \frac{-ig_2}{2c_W}\bar{\nu}_i\gamma^{\mu}P_L\nu_jZ_{\mu}\left(\delta_{ij}+\varepsilon_{ij}\right) \end{aligned}$$

Parameter	Prior	SM posterior
$G_F [{\rm GeV^{-2}}] [3]$	$1.1663787(6) \times 10^{-5}$	*
α [3]	$7.2973525664(17) \times 10^{-3}$	*
$\Delta lpha_{ m had}$ [3]	$276.1(11) \times 10^{-4}$	$275.4(10) \times 10^{-4}$
$\alpha_s(M_Z)$ [3]	0.1181(11)	*
$m_Z \; [\text{GeV}] \; [7]$	91.1875 ± 0.0021	91.1883 ± 0.0020
$m_H \; [\text{GeV}] \; [9, 10]$	125.16 ± 0.13	*
$m_t \; [\text{GeV}] \; [11-13]$	172.80 ± 0.40	172.96 ± 0.39

	Prior	NP-I posterior	NP-II posterior
$V_{us}^{\mathcal{L}}$	0.225 ± 0.010	0.2248 ± 0.0004	0.2248 ± 0.0004
ε_{ee}	0.00 ± 0.05	-0.0018 ± 0.0006	-0.0022 ± 0.0007
$arepsilon_{\mu\mu}$	0.00 ± 0.05	0.0008 ± 0.0004	0.0012 ± 0.0003
$\varepsilon_{ au au}$	0.00 ± 0.05	-0.0002 ± 0.0020	-0.0003 ± 0.0020

University of Zurich^{uz#}

EW Observables of Fit I

Observable	Ref.	Measurement	SM Posterior	NP-I posterior	NP-II posterior	Pull I	Pull II
$M_W [{ m GeV}]$	3	80.379(12)	80.363(4)	80.371(6)	80.370(6)	0.67	0.59
$\Gamma_W [{ m GeV}]$	[3]	2.085(42)	2.089(1)	2.090(1)	2.090(1)	-0.02	-0.02
$BR(W \rightarrow had)$	[3]	0.6741(27)	0.6749(1)	0.6749(2)	0.6749(1)	0	0
${ m sin}^2 heta_{ m eff}^{ m lept}(Q_{ m FB}^{ m had})$	3	0.2324(12)	0.2316(4)	0.2315(1)	0.2315(1)	-0.1	-0.1
${ m sin}^2 heta_{ m eff(Tev)}^{ m lept}$	3	0.23148(33)	0.2316(4)	0.2315(1)	0.2315(1)	0.17	0.17
$\sin^2 heta_{ m eff(LHC)}^{ m lept}$	3	0.23104(49)	0.2316(4)	0.2315(1)	0.2315(1)	-0.03	-0.03
$P_{ au}^{ m pol}$	$\left[7 ight]$	0.1465(33)	0.1461(3)	0.1474(8)	0.1472(8)	-0.14	-0.09
A_ℓ	[7]	0.1513(21)	0.1461(3)	0.1474(8)	0.1472(8)	0.72	0.60
$\Gamma_Z [{ m GeV}]$	[7]	2.4952(23)	2.4947(6)	2.496(1)	2.496(1)	-0.11	-0.11
$\sigma_h^0 [{ m nb}]$	$\left[7 ight]$	41.541(37)	41.485(6)	41.495(24)	41.493(24)	0.47	0.42
R^0_ℓ	$\left[7\right]$	20.767(35)	20.747(7)	20.749(7)	20.749(7)	0.06	0.06
$A_{ m FB}^{0,\ell}$	$\left[7\right]$	0.0171(10)	0.0160(7)	0.0163(2)	0.0163(2)	0.12	0.12
$R_b^{ ilde{0}}$	[7]	0.21629(66)	0.21582(1)	0.21582(1)	0.21582(1)	0	0
R_c^0	$\left[7\right]$	0.1721(30)	0.17219(2)	0.17220(2)	0.17220(2)	0	0
$A_{ m FB}^{0,b}$	$\left[7\right]$	0.0992(16)	0.1024(2)	0.1033(6)	0.1032(6)	-0.41	-0.36
$A_{ m FB}^{0,c}$	[7]	0.0707(35)	0.0731(2)	0.0738(4)	0.0738(4)	-0.20	-0.20
A_b	$\left[7\right]$	0.923(20)	0.93456(2)	0.9347(1)	0.9347(1)	-0.01	-0.01
A_c	$\left[7 ight]$	0.670(27)	0.6675(1)	0.6680(4)	0.6680(3)	0	0

$$P(O_i) = \left| \frac{O_i^{\exp} - O_i^{SM}}{\sqrt{(\sigma_i^{\exp})^2 + (\sigma_i^{SM})^2}} \right| - \left| \frac{O_i^{\exp} - O_i^{NP}}{\sqrt{(\sigma_i^{\exp})^2 + (\sigma_i^{NP})^2}} \right|$$

Observable	Ref.	Measurement	SM Posterior	NP-I posterior	NP-II posterior	Pull I	Pull II
$\frac{K \rightarrow \mu \nu}{K \rightarrow e \nu}$	[1, 14-16]	0.9978 ± 0.0020	1	1.00137 ± 0.00046	1.00173 ± 0.00043	-0.63	-0.82
$\frac{\pi \rightarrow \mu \nu}{\pi \rightarrow e \nu}$	[2, 3, 1619]	1.0010 ± 0.0009	1	1.00137 ± 0.00046	1.00173 ± 0.00043	0.75	0.38
$\frac{\dot{\tau} \rightarrow \ddot{\mu} \nu \bar{\nu}}{\tau \rightarrow e \nu \bar{\nu}}$	[3, 4]	1.0018 ± 0.0014	1	1.00137 ± 0.00046	1.00173 ± 0.00043	0.99	1.24
$\frac{K \to \pi \mu \bar{\nu}}{K \to \pi e \bar{\nu}}$	[1, 20, 21]	1.0010 ± 0.0025	1	1.00137 ± 0.00046	1.00173 ± 0.00043	0.25	0.11
$\frac{W \to \mu \bar{\nu}}{W \to e \bar{\nu}}$	[1, 5]	0.996 ± 0.010	1	1.00137 ± 0.00046	1.00173 ± 0.00043	-0.14	-0.17
$\frac{B \rightarrow D^{(*)} \mu \nu}{B \rightarrow D^{(*)} e \nu}$	[6]	0.989 ± 0.012	1	1.00137 ± 0.00046	1.00173 ± 0.00043	-0.11	-0.14
$\frac{\tau \to e \bar{\nu} \bar{\nu}}{\mu \to e \bar{\nu} \nu}$	[3, 4]	1.0010 ± 0.0014	1	0.9997 ± 0.0010	0.9995 ± 0.0010	-0.04	-0.15
$\frac{\tau \to \pi \nu}{\pi \to \mu \bar{\nu}}$	[4]	0.9961 ± 0.0027	1	0.9997 ± 0.0010	0.9995 ± 0.0010	0.20	0.26
$\frac{\tau \to \bar{K}\nu}{K \to \mu\bar{\nu}}$	[4]	0.9860 ± 0.0070	1	0.9997 ± 0.0010	0.9995 ± 0.0010	0.06	0.09
$\frac{\overline{W} \rightarrow \tau \overline{\nu}}{W \rightarrow \mu \overline{\nu}}$	[1, 5]	1.034 ± 0.013	1	0.9997 ± 0.0010	0.9995 ± 0.0010	-0.02	-0.03
$\frac{\tau \rightarrow \mu \nu \bar{\nu}}{\mu \rightarrow e \nu \bar{\nu}}$	[3, 4]	1.0029 ± 0.0014	1	1.0011 ± 0.0011	1.0013 ± 0.0011	1.06	1.17
$\frac{\tilde{W} \rightarrow \tau \bar{\nu}}{W \rightarrow e \bar{\nu}}$	[1, 5]	1.031 ± 0.013	1	1.0011 ± 0.0011	1.0013 ± 0.0011	0.10	0.11
$ V_{us}^{K_{\mu3}} $	[3, 22]	0.2234 ± 0.0008	0.2257(3)	0.22509 ± 0.00040	0.22516 ± 0.00040	0.81	0.74
$ V_{us}/V_{ud} ^{K/\pi}$	[22, 23]	0.2313 ± 0.0005	0.2317(4)	0.23078 ± 0.00044	0.23082 ± 0.00044	-0.16	-0.10
$ V_{us}^{\tau} _{\text{incl.}}$	[24, 25]	0.2195 ± 0.0019	0.2257(3)	0.22487 ± 0.00041	0.22491 ± 0.00041	0.48	0.45
$ V_{ud}^{eta} _{ ext{CMS}}$	[24, 25]	0.97389 ± 0.00018	0.974185(79)	0.97400 ± 0.00017	-	0.56	_
$ V_{ud}^{eta} _{ ext{SGPR}}$	[24, 26]	0.97370 ± 0.00014	0.974185(79)	-	0.97379 ± 0.00013	-	2.57

$$P(O_i) = \left| \frac{O_i^{\text{exp}} - O_i^{\text{SM}}}{\sqrt{(\sigma_i^{\text{exp}})^2 + (\sigma_i^{\text{SM}})^2}} \right| - \left| \frac{O_i^{\text{exp}} - O_i^{\text{NP}}}{\sqrt{(\sigma_i^{\text{exp}})^2 + (\sigma_i^{\text{NP}})^2}} \right|$$

University of Zurich^{uz∺}

Right-handed Neutrinos Fit

PAUL SCHERRER INSTITUT

Mixing for the Vector Triplet Model

After EWSB

$$M_0^2 = \begin{pmatrix} M_{Z^{(0)}}^2 & \frac{x}{c_W} \\ \frac{x^*}{c_W} & M_X^2 \end{pmatrix} \qquad M_{\pm}^2 = \begin{pmatrix} M_{W^{(0)}}^2 & x \\ x^* & M_X^2 \end{pmatrix} \qquad x = M_{W^{(0)}} \frac{g_X^{D\phi} v}{2}$$

$$\begin{pmatrix} W'_{\pm} \\ W_{\pm} \end{pmatrix} = \begin{pmatrix} X_{\pm} \cos \alpha_{WW'} - W_{\pm}^{(0)} \sin \alpha_{WW'} \\ X_{\pm} \sin \alpha_{WW'} + W_{\pm}^{(0)} \cos \alpha_{WW'} \end{pmatrix}$$

$$\sin \alpha_{WW'} \approx \frac{x}{M_X^2}$$

$$\sin \alpha_{ZZ'} \approx \frac{x}{M_X^2 x_W}$$

LHC bounds for the Vector Triplet Model

2-quarks-2-leptons

$$\begin{aligned} -\frac{4\pi}{(24\text{TeV}^2)} &\leq \frac{g_{11}^{\ell}g^q}{4M_{Z'}} \leq \frac{4\pi}{(37\text{TeV}^2)} \\ -\frac{4\pi}{(20\text{TeV}^2)} &\leq \frac{g_{22}^{\ell}g^q}{4M_{Z'}} \leq \frac{4\pi}{(30\text{TeV}^2)} \\ -10.5\frac{M_{W'}^2}{(10\text{TeV})^2} \leq g_{33}^{\ell}g^q \leq 0 \end{aligned}$$

$$|g^{q}|^{2} \le 15 \frac{M_{Z'}^{2}}{(10 \text{TeV})^{2}}$$

PAUL SCHERRER INSTITUT

APV & QWEAK bounds for the VT model

Information Criterion

In a bayesian approach, the *Information Criterion* allows for a comparison between different models

The second term takes into account the effective numbers of parameters in the model, allowing for a meaningful comparison of models with different number of parameters. Preferred models are expected to give smaller *IC* values

