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Soil 
Solution: 

ions & 
complexes 

Introduction of Metals into Soil Environments: 
Primary minerals, Agriculture, Industry, Sewage sludge, etc 
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Precipitation 
•Bulk product  
•Surface induced 
 

 

Adsorption 
• Inner-sphere  
• Outer-sphere 
  
 

Diffusion 
•Film 
•Pore 
•Matrix 

Bioavailability 



Iron (hydr)oxides 

• Iron (Fe) - abundant in earth crust, 
mostly as iron (hydr)oxides 

• 16 different (hydr)oxides, mostly 
formed as weathering products 

• Often nano-sized crystals with 
high surface area – most reactive 
sorbents for contaminants in the 
environment 

 

www.essential-hummanities.net 



We will look at the structure of: 

Ferrihydrite 
Very common iron hydroxide 
Poorly ordered 
Structure/chemical formula unclear 
 

Lepidocrocite 
Orthorhombic crystal structure 
Well-crystalized 
 

Webmineral.com 



Structures of Ferrihydrite and Lepidocrocite 

Ferrihydrite  Fe5O8H•4H2O(?)      Lepidocrocite (γ-FeOOH) 

(Cornell, 2003) 



But…. Do we know the structure? …. XRD 



Cook and Look 2015 

 

 

 

The debate is still ongoing 
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X-ray Absorption Spectroscopy (XAS): 

Detailled chemical und structural information (oxidation 
state, coordination numbers, bond distances, system 
disorder) 
• Solution species 

• Crystaline and amorphous solids 
• Surface complexes 

in-situ, non destructiv 

minimal sample preparation 

high selectivity/sensitivity (few ppm) 
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X-ray absorption spectroscopy 

valence 
electrons 

core 
electrons 

Visible light 
λ ~ 0.5 μm 
E ~ 2 eV 

X-ray light 
λ ~ 1 Å (=0.1 nm) 
E ~ 10 keV 
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X-ray Absorbtion Near Edge Structure; 
XANES 

Relative Energy 

Photoelectric 
Absorbtion 

Extended X-ray Absorption  
Fine Structure, EXAFS 

Pre-edge 
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 E < Eb 

 transition of e- from ground state (e.g.,   1s, 2s) to 
empty or partly filled, excited  states (nd orbital) 

• selection rules for e- transitions 

 speciation of Cr(VI) and Cr(III) 

• Cr(VI) 

•  toxic and mobil 

•Cr(III) 

•  hardly toxic 

• sorbed or incorporated into mineral  phases  
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XANES 

 E ~ Eb 

 Multiple scattering of photoelectron 

 Very intense and complicate resonance features: finger-
printing and theoretial calculations 

 Energy of absorption edge depends on oxidation state 
o Chemical shift of 1-3 eV for each withdrawing e- 
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EXAFS 

E>Eb 

 50 - 1000 eV above absorption  edge 

simplified illustration:  constructive & 
 destructive  frequencies from the   
 outgoing  photoelectron 

ABSORBER ATOM

λ ELECTRON

X-RAY PHOTON

BACKSCATTERER ATOM

OUTGOING WAVE

BACKSCATTERED WAVE

Absorber Atom 

Backscattering Atom 

Outgoing Wave 

Backscattered Wave 

X-ray Photon 

l Electron 
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Free atom 
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Cluster of atoms 
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EXAFS 

 Interference pattern (EXAFS) 

• Frequency correlated to bond distance 
• Amplitude correlated to coordination 

number and identity 

χ(k) =  (k) sin[2kR+ (k)]Σ αa
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Data Analysis 

 extraction of EXAFS 
•  pre-edge & spline, normalization  
•  convertion to wave vector k2 = 2m (E-Eo) / ħ2 
•  normally weighted by k3 

EXAFS 

raw data 

pre-edge 
polynomial 

spline 

pre-edge subtracted 
data 

X-ray Energy (eV) 
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Experimental set-up 

 Transmission  
• A = mx = ln(Io/I1) 
• concentrated samples 

 Fluorescence 
• A = mx = If/I0 
• dilute samples 

 Electron-yield 
• A = mx = Ie/I0 
• surface sensitive 

Electron Yield Detector 
Ie 

If 

I1 I0 

Fluorescence Detector 

X-ray 

Ion Chamber Detector Ion Chamber Detector 

Fluorescence X-ray 
Emission 

Auger Electron 
Emission 
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XAFS: measurement of the X-ray absorption coefficient (µ) 

What do you measure?  
- Absorption as function of energy  
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Need a Synchrotron… 
SLS 

ESRF 

Diamond 

Soleil 

and many more… 

http://apelh.free.fr/ecoulement/esrf.html
https://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCJvI69XWsscCFQE-FAodn_kJdg&url=https%3A%2F%2Fwww.kent.ac.uk%2Fces%2Fcareers-fair.html&ei=_SrTVdvVH4H8UJ_zp7AH&bvm=bv.99804247,d.d24&psig=AFQjCNG4hm5DcFgPhPBXByzK3joL0BWyVg&ust=1439988857055003
https://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCJvI69XWsscCFQE-FAodn_kJdg&url=https%3A%2F%2Fwww.kent.ac.uk%2Fces%2Fcareers-fair.html&ei=_SrTVdvVH4H8UJ_zp7AH&bvm=bv.99804247,d.d24&psig=AFQjCNG4hm5DcFgPhPBXByzK3joL0BWyVg&ust=1439988857055003
https://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCJvI69XWsscCFQE-FAodn_kJdg&url=https%3A%2F%2Fwww.kent.ac.uk%2Fces%2Fcareers-fair.html&ei=_SrTVdvVH4H8UJ_zp7AH&bvm=bv.99804247,d.d24&psig=AFQjCNG4hm5DcFgPhPBXByzK3joL0BWyVg&ust=1439988857055003
http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCPn2nY7XsscCFcjAFAodl8UHnw&url=http%3A%2F%2Fsciences.blogs.liberation.fr%2Fhome%2F2008%2F11%2Fvalrie-pcresse.html&ei=cyvTVbnxL8iBU5eLn_gJ&bvm=bv.99804247,d.d24&psig=AFQjCNHIb3rt2JudkolicYK3_WT_cS6K6A&ust=1439988971033738
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Synchrotrons produce bright light 
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EXAFS: 
- Identity of nearest neighbors 
- Bond distances 
- Coordination numbers 
- Amount of disorder 
 

XANES: (DOS) 
- oxidation state 
- band structure 
- multiple scattering 
 

Pre-edge: 
- localized electronic states 
- coordination chemistry 

Summary so far: 
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Comparison: XPS, XRD, XAS 
 
 electronic information  
 surface sensitive  
 In-situ application difficult 
 UHV needed 
 

 
 structural information  
 bulk technique  
 In-situ 
 long range order 
 

 
 electronic and structural information  
 bulk and surface sensitive 
 amorphous materials 
 In-situ 
 synchrotron needed 
 



Cook and Look 2015 

Example: Fe-oxides as contaminant sorbent 
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Wood impregnation in Willisau 

• Contaminants Cr(VI), Cu 
•  ~1 t Cr at a depth of 3-12 m 
• Groundwater protection zone   
   ([Cr(VI)]max = 0.01 mg/L) 

EH=150 mV 
[SO4

2-]=30 mg/L 
[NO3

-]=11 mg/L 
pH = 7 
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Permeable reactive barrier 

• Contaminants Cr(VI), Cu 
•  ~1 t Cr at a depth of 3-12 m 
• Groundwater protection zone   
   ([Cr(VI)]max = 0.01 mg/L) 

Permeable Reactive Barrier (PRB): 
couple the oxidation of Fe(0) with 
the reduction of Cr(VI)  
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oxide layer 

ZVI 

0.5 O2 + H2O + 2 e- → 2 OH- (cathode) 

  
• homogeneous redox reaction  
   (Buerge & Hug, 1997) 
• heterogeneous redox reaction  
   (Buerge & Hug, 1999) 
• ZVI-CrVI-direct reaction  
   (Liu et al., 2008) 

Fe → Fe2+ + 2 e- (anode) 

Fe2+ 
Fe2+ CrVI 

Molecular Cr/Fe ratio: 
1/3  
Hansel et al., 2003 
>1/3 (Cr clusters) 
Grolimund et al., 1999 
? 

Local structure ↔ Mechanism 

Permeable reactive barrier 
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Hitchhiker’s guide to molecular structure 

FeO6 octahedron 
(also: CrO3(OH)3 FeO3(OH)3) 

 

The basic structural unit 
of FeIII and oxides: 
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Local structure  

Goethite (α-FeOOH) 

• interatomic distances 
• 3D-arrangement 
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Nucleation, growth, aggregation of mineral phases 
 

Sorption complexes 
 

Important properties e.g. color  
(α-Cr2O3 – α-Al2O3:Cr3+) 
 

Relation to molecular Fe/Cr 
(-> mechanism) 

Why study local (~5Å) structure ?  

Sherman & Randall, GCA, 67 (2003), 4223. 
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XANES 
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Fe CaCr

Fe Cr CaFe Cr Ca
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homogeneous & heterogeneous 
redox reactions 

Cr/Fe < 1/10 

POI1: Cr/Fe > 1/3 
POI2: Cr/Fe ~ 1/3 

Back to the beginning: Permeable Reactive Barrier 

B. Flury, J. Frommer, U. Eggenberger, U. Mäder, M. Nachtegaal, R. 
Kretzschmar. Environ. Sci. Tech. 43, 6786-6792 



Cook and Look 2015 

Basic data reduction steps of  
- compare data that is measured in different modes (trans. / fluo.) and correct for 
different absorbances 

 
- extract the EXAFS signal (chi(k)) and the Fourier-transformed EXAFS signal 

- look at radial distribution function, and fit the first shell neighbour 
 

Tomorrow’s goals: 

Excellent tutorial of Demeter (by Bruce Ravel): http://www.diamond.ac.uk/Beamlines/Spectroscopy/Techniques/XAS.html  



1. Extract EXAFS signal 
   
-   Subtract smooth background 

 
 

Extraction of the EXAFS signal – chi(k) 



 
2. Transformation from E-space to k-space 
 
- Scattering of photoelectron on neighboring atoms 

 
- Unit of k-space: inverse Angstroms 
- „stretch“ the x-axis 
-    amplify signal at high energies (k-weight) 

Mass of  
electron  

Edge 
Energy 

Plank’s 
constant 

Photon Photoelectron 

Extraction of the EXAFS signal – chi(k) 



Conversion of chi(k) to the pseudo radial distribution function (RDF) 

To understand and visualize the geometric structure of our sample we need to  
Fourier transform the EXAFS signal from inverse distance into the distance domain 

? 

N0  X-ray absorbing atom 
N1  1st neighboring scatterer (shell) 
N2  2nd neighboring scatterer (shell) 
 
Rx  distance between absorber and scatterer 



Conversion of chi(k) to the pseudo radial distribution function (RDF) 

Fourier transformation crash course 
 
• FT transforms data from one dimension into its reciprocal one 
 

• example: transformation from the time into the frequency domain 

Wave function with period length of 1 s                   Frequency of 1 Hz 



Recover the distance of scattering atoms 
from the frequency of the scattered wave 
 
 Fourier transform the EXAFS function  
    (from Å-1 to Å) 

Define k-range for Fourier transformation 

Lower limit: 2-3 Å-1 ; upper limit: as far as reasonable (consider signal to noise) 

Conversion of chi(k) to the pseudo radial distribution function (RDF) 

Fourier  
Transform  
Button 



Fourier transformed of the EXAFS signal 
 
Remember: FT creates a complex function 
 
 always show magnitude AND real or imaginary part 
 

magnitude 

Imag part 

N1 

N2 N3 

Conversion of chi(k) to the pseudo radial distribution function (RDF) 



The pseudo RDF created in the previous step is now analyzed by fitting with a set of 
model structures 
 
 Create a model of the assumed structure 
 Calculate the EXAFS function of this theoretical structure (ATOMS @ ifeffit) 
 Fit the model to the data, extract structural parameters 
 

Part 2: Fitting of EXAFS data 

Calculated 
scattered 
wave 
 
 
 
 
 
 
Corresponding 
RDF 



EXAFS function 

Sum of damped sine functions with a pre-factor 
 
Structural Parameters: 
N:  coordination number  amplitude 
R:  radial distance  frequency 
σ2: pseudo Debye waller factor  damping 
 
 
 

Calculate EXAFS signal of model compound! → FEFF 

Theoretical first Ru-Ru shell of 
metallic ruthenium 

What information can we extract from a fit? 

Part 2: Fitting of EXAFS data 



Reminder: what‘s a coordination shell? 
 
Every shell of atoms has a specific distance from the absorber and a specific  
coordination number 

Part 3: Understanding the fit results 

From fitting of EXAFS data information about  
 
- the distance R of each shell from the absorbing atom 
  
- the number of atoms in each shell (coordination number) is obtained. 



XAS at the Swiss Light Source 
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Thank you for your attention! Questions? 
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X-rays (light with wavelength 0.06- 12 Å or energy 1-200 keV) are absorbed by all matter 
through the photo-electric effect: 
 
An X-ray is absorbed by an atom when the energy of the X-ray is transferred to a core level 
electron (K, L, or M shell) which is subsequently ejected from the atom. Any excess energy 
from the X-ray is given to the ejected photo-electron. 

The basic concept of XAFS 
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Electrons have  a particle and wave nature.  The photoelectron wave propagates away 
from the central atom (absorber), and it may scatter off neighboring atoms and finally 
return to its point of origin. 

hu e- 

Energy 

A 

fine structure 

e- 

Single scattering 
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hυ 
In phase 

Out of phase 
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The consequence of these scattering phenomena and wave interactions is that 
the intensity of X-ray absorption oscillate with a dependence on the structural 
environment of the absorber.  Mathematically modeling these oscillations 
provides precise local structural information.   
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