Proton Crate

```
In [3]: from IPython.display import Markdown as md import matplotlib.pyplot as plt import seaborn as sns
graphColors =["\#e6194b", "\#3cb44b", "\#ffe119", "\#0082c8", "\#f58231", "\#911eb4", "\#
46f0f0","\#f032e6","\#d2f53c","\#fabebe", "\#008080","\#e6beff","\#aa6e28", "\#fffac
8", "\#800000", "\#aaffc3", "\#808000", "\#ffd8b1", "\#000080", "\#808080", "\#000000" ]
sns.set_palette(sns.color_palette(graphColors))
plt.style.use('seaborn-paper')
import scipy.constants as sc \# see https://docs.scipy.org/doc/scipy/referenc
e/constants.html
import math
import numpy as np
from scipy.optimize import fsolve
\%matplotlib notebook
```


Powerboard dimensions?

In [4]:

```
# prototype dimemsions
min height = 22 #mm
height = 25 #mm
controler height = 15 #mm
width = 4\overline{5}#mm
```


Height

Moritz' his coil design:

- $\mathrm{ID}=16.2 \mathrm{~mm}$
- $\mathrm{OD}=26 \mathrm{~mm}$
- Height $=10.5 \mathrm{~mm}$

The wire is 2 mm . In addition, the wire has to bend. Looking at the current prototype in the lab, the height of the full aircoil is $\mathbf{<} \mathbf{1 6} \mathbf{~ m m}$. Some extra space is needed for:

- Connection on the board, being mounted on top SMD components. extra 1 mm
- Cooling shielded if need. extra 2 mm ?

Board thickness: $\mathbf{1 . 5 7} \mathbf{~ m m}$
Througth component and components on the bottom side: $\mathbf{1} \mathbf{~ m m}$
Total : 21.57 mm

- Minimum Height: $\{\{$ min_height $\}$ \}m
- Confortable Height: \{\{height\}\} mm

Width

First prototype has a $\{\{$ width\}\} mm width. So a width of maximum $\{\{$ width +5$\}\} \mathrm{mm}$ is feasible.

Length

Current prototype has a length of 70 mm . It would be better put the secondary filter nice in line with the main LC filter. We aim for $\mathbf{8 0}$ to $\mathbf{1 0 0} \mathbf{m m}$?

This is a bit bigger than the space currently foreseen:

Detector cage constrains

This is not clear from the grabcad drawings.

- $20 \times 10 \mathrm{~cm}$ should definitely be now problem, but that is a to little space
- $30 \times 15 \mathrm{~cm}$ seems feasible?

But Stefan Hetzel's drawing does not show the same cage? Or just and extra support spoke?

Power board arrangement

Number of boards

112 (2 VDC / power partitions) +14 (3.3 VDC MALIBU) $=126 \rightarrow 32$ power boards per side +2 controlers $==>2 \times(1$ controler +16 power boards $)$

Arrangement

Space for controller: \{\{controler_height\}\} mm (?)
To the below estimates, some space needs to be added for mounting mechanics and connectors

Controler + 16 boards crate

The elegant option of 1 crate with 16 boards probably does not fit

Total width crate $=\{\{16 *$ height + controler_height $\}\} \mathbf{m m}$ (tight fit $=\left\{\left\{16 * m i n _\right.\right.$height + controler_height $\left.\}\right\} \mathrm{mm}$) total height 2 crates $=\{\{2$ * (width +5$)\}\} \mathrm{mm}$

3×11 slots

This probably fits, not to elegant though regarding the back plane

Total width crate $=\{\{11 *$ height + controler_height $\}\} \mathbf{m m}$ (tight fit $=\{\{11 *$ min_height + controler_height $\}\} \mathrm{mm}$) total height $=\{\{3$ * $($ width +5$)\}\} \mathrm{mm}$

$2 \times 2 \times 8$ slots

This is a double crate arangement. Quite high (ignoring the controler board):
Height $=\left\{\left\{8^{*}\right.\right.$ height $\left.\}\right\} \mathbf{m m}$ (tight fit $=\left\{\left\{8^{*}\right.\right.$ min_height $\left.\}\right\} \mathrm{mm}$)
Has space for the controler board and input connectors in the corners
Width $=\{\{4$ * $($ width +5$)\}\} \mathrm{mm}$
(+ some extra space for mechanics)

Controler		Controler	
1	9	1	9
2		2	
3		3	
	15		${ }^{15}$

Mechanical design

"Box" design

In the first CAD implementation, every powerboard is a separat box containing the PCB

Held, and separated my these rails:

(https://www.fischerelektronik.de/web_fischer/de_DE/K\�\�hlk\�\�rper/E02.02/F\�\�hrungsschienen /PG/MSVL/search.xhtml)

This actually allows for a fairly close packing, with only 3 mm space between 2 rows/columns. The 2 mm gap is more then the PCB thickness (standard?). We can either

- Shove the PCB in the rails and add a narrower shielding box
- Make a narrower PCB, and mount it in a box. This has some cooling and shielding advantages

"Crate" design

Vendors of flexible/mini crates:

- Subrack_(http://www.pixustechnologies.com/products/category/subracks) with individual components (http://www.pixustechnologies.com/assets/Uploads/Subrack-components-individual.pdf)
- EuropacPRO (https://www.digikey.de/product-detail/de/schroff/24563172/1439-1210-ND/4209939) kit
- various digikey options (https://www.digikey.de/products/en/boxes-enclosures-racks/card-racks/588) and here (https://www.digikey.de/catalog/en/search?filters=51728)

Standard dimensions:

- HP pitch: the standard horizontal pitch on crates. 0.2 inch, or 5.08 mm . 5 HP's for Power boards would then be 25.4 mm.
- 1 U is 1.75 inch or 4.45 cm . However, there are no crate kits with 1 U in height

The problems with these kits, is that you add e.g. 16 mm to the width of a card from the guide rails (https://www.vectorelect.com/card-guides-cg1-series.html) and the mechanics (https://www.vectorelect.com /1404-0017-84.html). Unless we find a more compact option, this wont work.

"Homebrew/custom" crate

aka make all components custom

"Bigger" cards

We have could combine 2 or 3 converters, electricly isolated. Not my favorite option, but we can make 3 U cards then.

