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Incentive

The Interlock system makes up ∼ 20% of the total beam time loss

If interlocks can be predicted, we can prevent them

Figure by Sichen Li
1



Formulating the problem

Classification approach: what gets classified?

”windows” of a multivariate timeseries

what are stable and interlock windows?
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Evaluation metrics

Receiver operating characteristic (ROC) plots

True positive rate (TPR) against the false positive rate (FPR) of the model
predictions as a function of the discrimination threshold
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Evaluation metrics

How many false positives can we tolerate?

Target = max(TPR − 10 ∗ FPR)

Beam time lost w.r.t the non-intervention baseline of 25 seconds

per interlock:

(1− TPR) ∗ 25 + TPR ∗ 6 + FPR ∗ 45 ∗ 6
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Random Forest

Input

Model
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Random Forest
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Random Forest Feature Selection

Feature importance SHapley Additive Explanations

Only a few of the 311 channels seem to contain most of the information
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Random Forest Feature Selection

Feature importance

need top 50 features

SHapley Additive Explanations

need top 80 features
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Random Forest Feature Selection

SHD13Y:IST:2 BHE1LTA:IST:2
BHE2LTE:IST:2 BHE2LTA:IST:2
BHE1LTE:IST:2 BHE3LTA:IST:2
BHE1TWA:IST:2 CR5DNU:IST:2
CR5IN:IST:2 BHE3LTE:IST:2
MHVBON:ALTF:2 SHD13Y:IST:2
CR5PN:IST:2 CRPH34:IST:2
BHE4LTE:IST:2 CR5T:IST:2
CR4OT:IST:2

→ redundancy in the data
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Random Forest Feature Selection
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Random Forest

Online predictions:

Tool developed by Coello de Portugal Martinez Vazquez Jaime Maria

Reacts well to interlocks but cannot predict them
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Random Forest

• Performance of the Random Forest model is not sufficient

• The model is interesting for the feature selection

Conclusion: do feature selection for all future models
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CNN

Input

Recurrence Plots of the data windows

Time series classification → Image classification
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Recurrence Plots

What is a recurrence plot(RP)?

Tool to analyze dynamical systems and detect hidden dynamical patterns and
nonlinearities

Source: http://www.recurrence-plot.tk/glance.php
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CNN

Global Recurrence Plots with fixed epsilon

Di ,j =

||xi − xj ||, ||xi − xj || ≤ ε

ε, ||xi − xj || > ε
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CNN Architecture
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CNN

One plot per feature variation

One plot variation
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CNN

One plot per feature variation

One plot variation
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CNN Results

Windows of length 25 time stamps

One plot per feature One plot

→ one plot per feature variation seems better suited for this task
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CNN RFE

Recursive Feature Elimination

Reduced dataset for performance reasons:

• Trained on only the first and last stable windows

• Validated on 16% of the stable windows
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CNN RFE

11 selected features

CR1IN:IST:2 CR3OT:IST:2 FMX:IST:2 MHB9O:ILOG:2

CR3DSCO:IST:2 CR5DNO:IST:2 INKOX:ILOG:2 MRTC1WR:IST:2

CR3IN:IST:2 EECF2A:ILOG:2 MHS18:IST1:2
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11 selected features
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CNN

windows of length 500 time stamps subsampled at

every second timestamp

One plot per feature One plot
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CNN Information leak

Online testing showed periodic interlock predictions

This periodicity matched the labeling pattern of the interlock timestamps:
x.0 seconds or x.2 seconds

Figure by Jochem Snuverink
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CNN Information leak

Cross-validation shows a relevant drop in performance of the model coincides
with the change in time step labeling, namely the 4th of october
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CNN Information leak

Uncertainty in the interlock time stamp allocation

Solution to the leakage problem:

• Random allocation of the interlock time stamp in the

uncertainty range → has been done for Random Forest results

presented here

• Better: allocate interlock to time stamp at which the beam

current drops to 0 → CNN currently being tuned to this

dataset
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CNN Current status
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Summary

• do feature selection for all future models

• Random Forest: need to do online testing to verify model

performance

• CNN: very promising model, needs tuning to the new dataset
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