Performance of different machine learning techniques for forecasting of particle accelerator interlocks

Mélissa Zacharias May 19, 2020

Incentive

The Interlock system makes up $\sim 20\%$ of the total beam time loss

If interlocks can be predicted, we can prevent them

Formulating the problem

Classification approach: what gets classified?

"windows" of a multivariate timeseries

what are stable and interlock windows?

Receiver operating characteristic (ROC) plots

True positive rate (TPR) against the false positive rate (FPR) of the model predictions as a function of the discrimination threshold

Evaluation metrics

How many false positives can we tolerate?

Target = max(TPR - 10 * FPR)

Evaluation metrics

Beam time lost w.r.t the non-intervention baseline of 25 seconds per interlock:

$$(1 - TPR) * 25 + TPR * 6 + FPR * 45 * 6$$

Model

Feature Selection

mean(ISHAP value) (average impact on model output magnitude)

Feature importance

SHapley Additive Explanations

Feature Selection

SHapley Additive Explanations

Feature importance

Only a few of the 311 channels seem to contain most of the information

7

Feature importance

Feature Selection

1.0 0.8 True Positive Rate 0.6 top5 top10 0.4 top15 top20 top30 0.2 top50 top100 top200 all 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate

SHapley Additive Explanations

Feature Selection

Feature importance

need top 50 features

SHapley Additive Explanations

Online predictions:

Tool developed by Coello de Portugal Martinez Vazquez Jaime Maria

Online predictions:

Tool developed by Coello de Portugal Martinez Vazquez Jaime Maria

Reacts well to interlocks but cannot predict them

- Performance of the Random Forest model is not sufficient
- The model is interesting for the feature selection

Conclusion: do feature selection for all future models

Input

Recurrence Plots of the data windows

Time series classification \rightarrow Image classification

What is a recurrence plot(RP)?

Tool to analyze dynamical systems and detect hidden dynamical patterns and nonlinearities $% \left({{{\left[{{{\rm{T}}_{\rm{T}}} \right]}}} \right)$

 $Source: \ http://www.recurrence-plot.tk/glance.php$

Global Recurrence Plots with fixed epsilon

$$D_{i,j} = \begin{cases} ||x_i - x_j||, & ||x_i - x_j|| \le \epsilon \\ \epsilon, & ||x_i - x_j|| > \epsilon \end{cases}$$

One plot per feature variation

One plot per feature variation

One plot variation

Results

Windows of length 25 time stamps

One plot per feature

One plot

Results

Windows of length 25 time stamps

One plot per feature

One plot

 \rightarrow one plot per feature variation seems better suited for this task

Recursive Feature Elimination

Reduced dataset for performance reasons:

- Trained on only the first and last stable windows
- Validated on 16% of the stable windows

11 selected features

CR1IN:IST:2	CR3OT:IST:2	FMX:IST:2	MHB90:ILOG:2
CR3DSCO:IST:2	CR5DNO:IST:2	INKOX:ILOG:2	MRTC1WR:IST:2
CR3IN:IST:2	EECF2A:ILOG:2	MHS18:IST1:2	

11 selected features

windows of length 500 time stamps subsampled at every second timestamp

One plot per feature

One plot

Information leak

Online testing showed periodic interlock predictions

Information leak

Online testing showed periodic interlock predictions

This periodicity matched the labeling pattern of the interlock timestamps: x.0 seconds or x.2 seconds

Figure by Jochem Snuverink

Cross-validation shows a relevant drop in performance of the model coincides with the change in time step labeling, namely the 4th of october

Uncertainty in the interlock time stamp allocation

Solution to the leakage problem:

- Random allocation of the interlock time stamp in the uncertainty range \rightarrow has been done for Random Forest results presented here
- Better: allocate interlock to time stamp at which the beam current drops to 0 \rightarrow CNN currently being tuned to this dataset

Current status

- do feature selection for all future models
- **Random Forest**: need to do online testing to verify model performance
- CNN: very promising model, needs tuning to the new dataset

Thank you to

Dr. A. Adelmann (ETH) Sichen Li (ETH) Dr. Jochem Snuverink (PSI) Jaime Coello (PSI) Dr. Perez Cruz Fernando (SDSC)