

Abstract ID : 97

Monitoring active sites for CO₂ methanation on Ni/CeO₂ catalysts by NAP-XPS

Content

 $\rm CO_2$ hydrogenation is a hot topic in heterogeneous catalysis and a key step to satisfy future energy demand and to supply building blocks for the petrochemical industry while mitigating $\rm CO_2$ emissions. Ni/CeO₂ catalysts are very active and selective for total hydrogenation of $\rm CO_2$ to methane and, however, the nature of the active sites is still unclear. On the basis of ex-situ techniques, it has been suggested that Ni/CeO₂ catalysts combine two types of active sites, surface oxygen vacancies located at the Ni₂-CeO₂ interface, where chemisorption and dissociation of $\rm CO_2$ take place, and reduced Ni⁰ sites for H₂ dissociation. The best Ni/CeO₂ catalysts are those that combine both types of active sites and distribute the nickel available on the catalyst in an optimum proportion. If this balance is not appropriate, in the case of Ni²⁺-CeO₂ interface sites excess, the surface of the catalyst suffers strong accumulation of carbon species (formates, bicarbonates carbonates, etc.) waiting for further hydrogenation or remaining as reaction spectators that cover the surface. This occurs if Ni²⁺-CeO₂ interface sites prevail at expenses of Ni⁰ sites. On the contrary, in case of Ni⁰ sites excess, there is a lack of Ni²⁺CeO₂ sites, where CO₂ is efficiently chemisorbed and dissociated, what results in poor CO₂ chemisorption and dissociation. The aim of the current study is to monitor the behavior of the different nickel and cerium species on a Ni/CeO₂ catalyst, prepared according to a previously optimized protocol, under CO₂ methanation conditions using Near Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS).

The surface of a model 12 wt.% Ni/CeO₂ catalyst has been investigated under CO₂ methanation conditions (20% CO₂ + 80% H₂) at the CIRCE beamline of ALBA synchrotron. The Ce3d and Ni2p core levels were monitored with $h\nu$ =1090 eV.

It was concluded that the species involved in the redox processes taking place during CO_2 methanation are the Ni^{2+} -CeO₂/Ni⁰ and Ce⁴⁺/Ce³⁺ pairs. In addition, a small fraction of nickel is present on the catalyst surface forming Ni^0 and Ni^{2+} -carbonates/hydroxyls (around 20% of the total surface nickel), but these species do not participate in the redox processes of the methanation mechanism.

Under CO₂ methanation conditions the H₂ reduction rate of the Ni²⁺-CeO₂/Ni⁰ and Ce⁴⁺/Ce³⁺ couples is much faster than their CO₂ reoxidation rate (at least 2 times faster, at 300C), but a certain proportion of nickel always remains oxidized under reaction conditions. The high activity of Ni/CeO₂ catalysts for CO₂ methanation is tentatively attributed to the simultaneous presence of Ni²⁺-CeO₂ and Ni⁰ active sites where CO₂ and H₂ are respectively expected to be efficiently dissociated [1].

[1] S. López-Rodríguez et al., J. of CO₂ Utiliz. 2022, 60: 101980.

Primary authors: Mr LÓPEZ-RODRÍGUEZ, Sergio (Departament of Inorganic Chemistry, University of Alicante, Carretera San Vicente del Raspeig s/n E-03080, Alicante, Spain.); Dr DAVÓ-QUIÑONERO, Arantxa (Departament of Inorganic Chemistry, University of Alicante, Carretera San Vicente del Raspeig s/n E-03080, Alicante, Spain); Dr BAILÓN-GARCÍA, Esther (Departament of Inorganic Chemistry, University of Alicante, Carretera San Vicente del Raspeig s/n E-03080, Alicante, Spain.); Dr LOZANO-CASTELLÓ, Dolores (Departament of Inorganic Chemistry, University of Alicante, Carretera San Vicente del Raspeig s/n E-03080, Alicante, Spain.); Dr LOZANO-CASTELLÓ, Dolores (Departament of Inorganic Chemistry, University of Alicante, Carretera San Vicente del Raspeig s/n E-03080, Alicante, Spain.); Dr VILLAR-GARCÍA, Ignacio J. (ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain.); Dr PÉREZ-DIESTE, Virginia (ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain.); Dr ONRUBIA-CALVO, Jon Ander (Chemical Engineering Department, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, E48940 – Leioa, Bizkaia, Spain.); Dr GONZÁLEZ VELASCO, Juan Ramón (Chemical Engineering Department, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, E48940 – Leioa, Bizkaia, Spain.); Prof. BUENO-LÓPEZ, Agustín (Departament of Inorganic Chemistry, University of Alicante, Carretera San Vicente del Raspeig s/n E-03080, Alicante, Spain.)

Presenter: Dr PÉREZ-DIESTE, Virginia (ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain.)

Track Classification: Catalysis