

Abstract ID : 21

Towards CO₂ hydrogenation: A combined (NAP-)XPS and DFT study on In₂O₃(111) model catalysts

Content

In₂O₃-based catalysts have shown high activity and selectivity for CO₂ hydrogenation to methanol. The origin of this high performance is, however, still under debate. To improve the understanding of the surface chemistry of In_2O_3 , we studied the reactivity of an $In_2O_3(111)$ single-crystalline film [1] and investigated the adsorption of CO₂ on $In_2O_3(111)$ in a combined X-ray photoelectron spectroscopy (XPS) and density-functional theory (DFT) study.

Different surface terminations of $In_2O_3(111)$ have been reported in the literature [2,3]. We have investigated the effect of these different surface terminations on the adsorption of CO_2 on the $In_2O_3(111)$. The experiments show that the CO_2 adsorption is hindered on the hydroxylated surface compared to the stoichiometric and the reduced surface. This shows that the hydroxyl groups block the CO_2 adsorption. The CO_2 appears to adsorb as a HCOO on all surface terminations. The required hydrogen is believed to originate from residual H_2 or water in the experimental chamber.

Additionally, we studied the effect of the pressure gap on this system (Figure 1). NAP-XPS measurements showed the formation of a new chemical species at 1 mbar CO_2 that might originate from CH_2O . Furthermore, the addition CO to the CO_2 and H_2 gas mixture appears to cause the formation of O-CH₃ groups, indicating that CO in the syngas mixture might be crucial for CO_2 hydrogenation over In_2O_3 catalysts.

Primary author: GERICKE, Sabrina (Lund University)

Co-authors: Dr KAUPPINEN, Minttu M. (Department of Physics and Competence centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden); Dr WAGNER, Margareta (Institute of Applied Physics Vienna University of Technology, 1040 Vienna, Aus); Dr ZETTERBERG, Johan (Lund University); Prof. DIEBOLD, Ulrike (Institute of Applied Physics Vienna University of Technology, 1040 Vienna, Aus); Prof. GRÖNBECK, Henrik (Department of Physics and Competence centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden); Prof. LUNDGREN, Edvin (Lund University)

Presenter: GERICKE, Sabrina (Lund University)

Track Classification: Surface science/chemistry