Status update

Simulation setup & Loss map anomaly detection

Speaker: Loïc COYLE

Acknowledgements: M.Schenk, R. Bruce, R. De Maria, A. Mereghetti, D.

Mirarchi, T. Persson

Context

Optimize particle losses in the LHC.

- Data driven surrogate model of the losses
- Simulation based loss rates & loss maps
- Operational loss maps

Simulations

Framework

Pysixdesk: https://github.com/SixTrack/pysixdesk

Python madx/sixtrack particle tracking simulation handler.

Can run simulations with aperture / collimators.

Can run on the BOINC (LHC@Home) system.

Result collection to sqlite/mysql backend.

Modification

Use a custom aperture model, with just the primary collimators.

Black hole particle absorbers, no scattering \rightarrow faster simulations.

Still some open questions regarding the input particle distribution, but the infrastructure has for the most part been setup.

Loss Maps

Context

Loss distribution is another observable with which to benchmark simulations.

Interesting idea: get commissioning loss maps from operational data.

Context

Loss distribution is another observable with which to benchmark simulations/models.

Interesting idea: get commissioning loss maps from operational data.

Keep it simple

Set a ~simple but related problem **loss pattern anomaly detection**. Can we detect anomalous loss distributions in operational BLM data ?

 \rightarrow this could give hints as to if we drift away from the validated loss patterns

Downloaded all **STABLE** operational BLM data \rightarrow ~120Gb

Select all BLMs at **Primary & Secondary** collimators \rightarrow 82 BLMs \rightarrow ~3Gb $\stackrel{\text{$\sim}}{\longrightarrow}$

Rolling 1min sum

Keep it simple

Raw data

What the model sees: BLMs at primary & secondary collimators

The model - AutoEncoder

AEs learn to recreate the input while reducing the dimensionality through a bottleneck.

AE can recreate inputs they see more often better than inputs they see less often \rightarrow anomaly detection !

No tuning of hyperparameters done

implementation: keras/tensorflow

Useful anomaly detection library: https://github.com/yzhao062/pyod

anomaly score distribution

Second try - with filtering

Filter out samples where intensity < 1e11

Remove fills where the starting intensity < $1.5e14 \rightarrow$ remove low number of bunch fills

Remove rolling sum \rightarrow just blurred out the details

Same blms, same model.

most anomalous samples:

		fill_number	mode	timestamp	
	anomaly score distri	bution		2018-06-02 00:01:36.148000002+02:00	652.499088
-				2018-06-02 00:01:38.123000145+02:00	564.841354
106		6751	STABLE	2018-06-02 00:01:41.150000095+02:00	564.751117
-				2018-06-02 00:01:37.117000103+02:00	564.612878
10 ⁵				2018-06-02 00:01:40.118000031+02:00	563.182124
ample 10 ⁴			 Lower anomaly score maxima No real clear cut off → could potentially change with model tuning 5 most anomalous sample in 6751 		
Number of s					
10 ²					
10 ¹	Ш,		Fills o 6751,	orders by most anomalou 6648, 6763, 6672	is sample:
	0 100 200 300	400 500 600	Let's i	investigate	
	Anomaly score				

Already looks much more physical.

What about the loss map?

Logbook entry:

Announcer signalled: B1 RF clock generator STATUS is not OK. This was followed by beam leaking to the abort gap which triggered the cleaning.

Then, B1/B2 RF Beam Control synchro loop NOISE above limits. The problem can be seen as well on the bunch length.

It recovered on its own within 5min. RF expert checking.

RF problem $! \rightarrow$ a real anomaly

prediction

6672

Hard to tell what is going on... the colours are hiding a lot.

The model clearly sees something changing.

What about the loss distribution ?

2018-05-11 17:08:36.924000025+00:00

Flat losses

Higher losses in secondaries than in primaries

Relevant logbook entry ?

Zoom on IR7:

2018-05-11 17:08:36.924000025+00:00

Conclusion

Surrogate model of the losses:

- Dataset exploration
- Formulating the problem

Simulations:

- Machinery mostly setup
- First test results coming in as we speak

Loss maps:

- Infrastructure up and running
- Some very compelling results, needs fine tuning.