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FORECASTING REMAINING USEFUL LIFE:
INTERPRETABLE DEEP LEARNING APPROACH
VIA VARIATIONAL BAYESIAN INFERENCES
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GOAL

» Predicting remaining useful life (RUL) for machinery -> preemptive
maintenance, prevent failure

» Forecasting via machine learning with “interpretability”
» the decision logic of the model itself is transparent
» 1= post-hoc explainability
» Two types of models
» Probabilistic lifetime models: easy to interpret, not machine-specific
» Data-driven ML: black-box, but good predicting power

» Combine them
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PROPOSED STRUCTURED-EFFECT NETWORK

» Decompose the RUL prediction into

» population-wide baseline: A non-parametric, general lifetime
common across all machines

» machine-specific heterogeneity, including
» A linear combination of sensor measurement

» A recurrent component that incorporates historic data

SENN, (t; X;, ... X1) = At + BTX, + RNNp (X;,.... X1, t)

Non-parametric componentwith explicit lifetime model Linear componentwith current condition Recurrent componentwith deep neural network

explicit probabilistic lifetime model

Parameter: a, b



PAPER

1. COMMON BASELINE: PROBABILISTIC LIFETIME MODELS

» Use past lifetimes of all machines to fit a pre-defined pdf form

» The Weibull distribution, and the log-normal distribution over
total lifetime Z:  Pwuu(Z: a, b) = %(g)b_le -(g)b and

1, (log(2) — a)?
J27bZ 2b?

Plog-normal(Z; a,b) = { , Z>0,

» Conditional expectation, given that the machine had already
run for time t

A(t) = Ez_weibuli(a,p)[Z1Z > t] =t and A(t) = Ez_iog-normal(a,p)[Z1Z > t] — ¢

» Parameter: a, b
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2. LINEAR COMPONENT

» input current sensor data: 8 X, or aggregation function

over past sensor data: (X, ..., X)

» Parameter: beta

Aggregation function Formula Interpretation
Max max(Xy,...,.X) Extrema
Min min(Xy,...,.X;) Extrema
Mean U= 1 D Average sensor
e =l measurement
Range max — min Variability
Sum ;_1 X Total signal
Energy Z§=1 X7 Total signal with
focus on peaks
Standard deviation 1 Variabili
o= \/;2:1 Xi — p)? v
Skewness 1 3 (Xi —;4)3 Symmetry of
t Zi=1\ o deviation
Kurtosis 1 > (Xi - ;4)4 Infrequent extreme
t Hi=1\ o deviations
Peak-to-peak Bandwith

Root mean square

Entropy

Arithmetic mean of
power spectral
density

Line integral

Kalman filter

1 n1 1 n2 .
o 22, loc max + o 221 loc min

1t 2
\’?Zi=1)(i

- Yi_, P(X) log P(X))
EYRY.O

20 log;, 05

Yo Xip1 — Xil
Yi—b- XL, aiXii

Total load focus on
peaks
Information signal

Frequency of
oscillations
Path length

Unexpected
deviation
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3. RNN

Hidden state h1

RNNo = fio (X foon (Xi1, ..VNN([XI, on])j)]).

» RNN iterates over the sequence while updating its hidden
state ht, which summarizes the already-seen sequence

» The neural network can absorb the variance that cannot be
explained by the other components

» Parameter: Theta
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MODEL ESTIMATION THROUGH BAYESIAN INFERENCE

» Determine the optimised combined set of unknown parameters
0* ={a,b,f, 0} by maximizing the overall likelihood:

PXI106)P®6)  PXI0)P(O)

0* = argmax, P(6 | X)="—""75"" = [ P(X16)P(6)de

» all parameters with a pre-defined prior distribution

» Non-parametric component g ~ /V(aemp,-,,ical,l), b ~ ﬂ/(bempiricaz,1)

» Linear component: normal g; ~ A#(0,10); Laplace prior for feature
selection

» Recurrent component: 2-layer LSTM, 100 and 50 neurons; All weights
~ Gaussian prior with standard deviation 1
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VARIATIONAL BAYES METHOD

» approximates the true posterior via a variational
distribution Q) = P©1X)

» -> Find the optimal lambda*, along with the
corresponding distribution Q* that is closest

» Derive a variational lower bound ELBO(4) and do gradient
descent to optimise the three components simultaneously

ELBO(A) =:EqllogPX, 6)] — Eq,[logQ.(6)]

» Choose A by VELBO(A)
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DATASET

» Turbofan Engine Degradation Simulation dataset

» Predict the RUL (measured in cycles) based on sensor data
from 200 aircraft engines -> 100 training, 100 testing

» 21 sensors
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FORECAST RESULT

» Feature-engineering helps

» Traditional ML < Structured-effect
network < RNN

Method MAE
BASELINES WITHOUT SENSOR DATA
Empirical RUL 45.060
Conditional expectation (Weibull) 27.794
Conditional expectation (log- 27.409
normal)
TRADITIONAL MACHINE LEARNING
Ridge regression 19.193
Ridge regression (with feature 18.382
engineering)
Lasso 19.229
Lasso (with feature engineering) 18.853
Elastic net 19.229
Elastic net (with feature 18.245
engineering)
Random forest 17.884
Random forest (with feature 17.793
engineering)
SVR 18.109
SVR (with feature engineering) 21.932
RECURRENT NEURAL NETWORKS
LSTM 11.188
STRUCTURED-EFFECT NEURAL NETWORKS
Distribution  Linear component
Weibull None 15.862
Weibull Regularized 17.433
Weibull Feature engineering  13.392
Weibull Regularized feature = 14.989
engineering
log-normal None 15.061
log-normal Regularized 16.319
log-normal Feature 13.267
engineering
log-normal Regularized feature = 14.545

engineering
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FORECAST DECOMPQSITION
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» The distribution-based lifetime component contributes a considerable portion <- overall nature of
the RUL (0.175 of variance)

» The sensor measurements introduce a within-engine and within-time variability (0.408 of variance)

» The recurrent neural network introduces a non-linear black-box component: very small, maybe due
to enough predicting power of the current measurement X, (0.064 of variance)
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POSTERIOR DISTRIBUTION

: 30
30
=3
25 20 20
Distribution parameters a and b g5z
()
) i | I| ) II I II
80 85 90 95 100 105 18 19 20 21 22
Shape a Scale b
Sensor Mean Standard Standardized
estimate deviation coefficient
Xo —33.169 0.498 —16.506
X2 49.721 0.250 12.440
X1 44,932 0.258 11.601
X5 48.154 0.230 11.073
X11 —24.622 0.357 —8.796
. . X0 42.850 0.184 7.880
Llnear Components Correspondlng to 21 sSensors X4 —22.540 0.317 —7.155
X, —16.183 0.275 —4.447
Xis -13.934 0.297 —4.145
X, —12.446 0.316 —3.931
Xe 19.678 0.159 3.126
X3 —7.851 0.318 —2.494
Xi17 —9.,951 0.208 —2.066
Xs —4.121 0.367 —1.511
X6 —-0.273 2.105 —-0.574
X13 —1.424 0.348 —0.495
X9 0.234 2.028 0.474
X10 0.126 1.900 0.239
Xi8 —0.095 1.936 —-0.184
X, —-0.070 1.937 —-0.135

Xs 0.001 1.993 0.002
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DERIVATION OF OPTIMISATION PROCEDURE

Appendix A. Derivation of ELBO for structured-effect neural network

Our suggested approach draws upon variational Bayesian methods and approximates the true posterior via a variational distribution Q,(6) = P(0
| X). Here Q,(6) refers to a family of distributions that is indexed by A and, hence, our optimization problem translates into finding the optimal A
along with the corresponding distribution Q+. The following theorems state the mathematical definition of A" and introduce a tractable approx-

imation.
Theorem 1. The optimal A." is given by

A* = argmin, Eg,[logQ:(8)] — Eg,[logP (X, 6)] + logP(X). (A1)

Proof. The fit between the variational distribution Q,(6) and the posterior distribution P(6 | X) can be measured by the Kullback-Leibler divergence. Hence, we

yield

3* = argmin, KL(Q(6) Il P(6 | X)). (A2)
Inserting the definition of the Kullback-Leibler divergence results into

A* = argmin, E, [logQ,(6)] — Eg,[logP (6 | X)] = argmin, Eq, [logQ,(6)] — Eq,[logP(X, 6)] + log P (X). (A4)

Unfortunately, Eq. (1) is intractable, as it depends on the marginal likelihood of the model, log P (X). Therefore, the following theorem derives an

approximation for the marginal likelihood of the model.
Theorem 2. The marginal likelihood of the modellog P(X) can be approximated by the evidence lower bound, ELBO(A), i.e.,

log P(X) 2> Eq,[log P(X, 0)] — Eq,[log Q2(0)] = ELBO (4). (A5)
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DERIVATION OF OPTIMISATION PROCEDURE (CONT.)

Proof. Utilizing Jensen's inequality, it holds that

logP(X) = log [ P(X,0)d6 =log [ P(X, )& g0 = lg[EQA[P &, 9)] ZIEQA[logP &, e)]=[EQl[logP(X, 8)] — Eo,[logq(®)].

Q:(6) Q.(6) Q:(6)

Theorem 3. The optimal A.” can be approximated by
A* = argmax, ELBO ().

Proof. From Egs. (1) and (2), it immediately follows that
A* = argmin, logP (X) — ELBO(A).
Aslog P(X) is constant with respect to A, the value A.” can be approximated by maximizing ELBO(A,). _
In order to optimize ELBO(A), we utilize gradient descent with the gradients defined by
VAiELBO(A) = V, Eg,[logP (X, 6)] — Eqg,[logq(6)] = Eq,[Vilogq(6)(logP(X, 6) — logq(6))].

We further utilize Monte Carlo integration to obtain the estimates of the ELBO(A) and the gradient.

(A7)

(A8)

(A9)

(Al11)



